

Compositionality: The genetic code and language are examples of systems in which discrete elements can generate a large number of meaningful entities that are quite distinct from those of their elements

The Structure of Skeletal Muscle

Modularity

 Does the vertebrate motor system construct movements combining discrete modular elements?

Evidence for muscle synergies ?

If a group of muscles is controlled as a unit, i.e. as a synergy, then the level of activity of those muscles should be correlated
 a

muscles

EMG recordings from 16 leg muscles

Extraction algorithm

 We developed an iterative algorithm to extract a set of timevarying synergies that minimize the total reconstruction error

[d'Avella & Tresch, NIPS 14]

Synergy identification

-EMGs were averaged every 100ms

 The number of synergies was chosen as the minimum number that could explain at least 95% of the variation in the data

Synergy validation

- Are the identified synergies just an arbitrary description of the constraints in the motor output?
- In support of a neural origin of synergies

 → synergy recruitment capture well the pattern
 of covariation across different episodes
 → similar synergies are extracted across
 behaviors

Focal microstimulation of the lumbar spinal cord has Revealed a small number of circuits that are organized to produce muscle synergies.

in the planning and instruction of voluntary movement

Experimental trajectory procedure

Motor systems – levels of control

Three kicking synergies

Compositionality - Combinations of Muscle Synergies in the Construction of Motor Behavior

Emilio Bizzi Massachusetts Institute of Technology

Synergies extracted from jumping swimming and walking

Motor control primitives in the spinal cord

Mussa-Ivaldi, Giszter and BizziCold Spring Harbor Symposium on Quantitative Biology, vol. 55 (1990)

Regions of the lumbar spinal cord containing the neural circuitry that specifies the force fields

Tonic Forces

Costimulation of the lumbar interneurons

Summary of results

- The muscle patterns recorded in a variety of natural behaviors can be reconstructed as combination of a small number of muscle synergies
- Synergies are similar across behaviors
- A few synergies are identified only in specific behaviors
- Some synergies have a single dominant muscle and they are part of the same sequence in different behaviors

A. d'Avella S. Giszter F. A. Mussa-Ivaldi P. Saltiel M. Tresch Vincent C. K. Cheung

Motor systems – levels of control

Examples of Cell Activity Recorded in the Primary Motor Cortex

Two other types of memory cells

Compositionality - Combinations of Muscle Synergies in the Construction of Motor Behavior

Emilio Bizzi Massachusetts Institute of Technology The finding that combination of synergies can explain our data suggest that our synergies may correspond to building blocks of the CPGs, sometimes formulated as a mosaic of "unit burst generators" (Grillner, 1985)

Results

- The EMG patterns recorded during natural motor behaviors can be reconstructed by combinations of a few time-varying muscle synergies
- In some behaviors, there is a systematic relationship between synergy activation coefficients and features of the movement (e.g. kick direction)

Figure 4. Examples of swimming synergies from analysis stage I

Cheung, V. C. K. et al. J. Neurosci. 2005;25:6419-6434

Copyright ©2005 Society for Neuroscience

Summary

The main finding is that both intact and deafferented behaviors are primarily generated by the same set of synergies.

Modularity in the spinal cord

- 'Half-centers' for the control of rhythmic behaviors (e.g. locomotion) (Brown 1910, Jankowska 1967)
- Central pattern generators (CPGs) by combinations of 'unit burst generators' (Grillner 1981)
- Force field modules (Bizzi 1991)

Figure 9. Reconstructing the original EMGs with synergies and their coefficients

Cheung, V. C. K. et al. J. Neurosci. 2005;25:6419-6434

SOCIETY FOR NEUROSCIENCE The Journal of Neuroscience

Copyright ©2005 Society for Neuroscience

Cheung, V. C. K. et al. J. Neurosci. 2005;25:6419-6434

SOCIETY FOR NEUROSCIENCE The Journal of Neuroscience

Motor systems – levels of control

