The refinery of the future A catalytic approach

BR

DETROBRAS

Eduardo Falabella Sousa-Aguiar PETROBRAS Research Centre (CENPES) These is a magic made by melody: A spell of rest, and quiet breath, and cool heart, that sinks through fading colors deep to the subaqueous stillness of the sea, and floats forever in a moon-green pool, reliant the arms of shythm and of sleep.

BRAZ

Elizabeth Bishop (American poetess)

Introduction

The main challenges of the refining industry nowadays are:

- More stringent environmental regulation;
- Growing demand for cleaner fuels;
- -Traditional raw material (crude oil) of inferior quality;

-Uncertainties regarding the final choice of the customers;

 Growing pressure on the industries to reduce the emission of greenhouse gases;
 Globalisation;

-Maintenance of profitability.

BR

Introduction

The increasing requirement for cleanburning fuels is drastically changing the traditional goals of the refining industry

BR

The generation of cleaner fuels may be achieved by introducing further processing capacity in refineries, such as desulphurisation; however, these new units require energy and lower thermal efficiency

Hence, an improvement in air quality during the use of cleaner diesel may come at the expense of higher greenhouse-gas emissions during such diesel production

Introduction

The refinery must search for intelligent alternative solutions to meet all those requirements.

BR

ETROBRAS

Therefore, the search for alternative feedstock such as natural gas or biomass has become a must in order to cope with more stringent regulations. Also, alternative refining routes such as synthetic fuels are striking back. In this new peculiar scenario, catalysts play an outstanding role BR

Scenarios

Scenario	Raw materials	Market	Process	Focus
Inertial (Prevailing vision among refiners)	Increasing proportion of heavy crude oils	 Traditional fuels with more stringent regulation Growing market 	Traditional	Higher profitability
Incremental (Refiners, contractors, catalyst industry, car industry and government)	- Heavy oils - Natural gas	 Potential use of Hydrogen as fuel Growing market 	 Use of traditional technologies; More compact equipment Oil pretreatment in the production fields 	Integration with petrochemistry
Innovative	 Heavy oils Natural gas Coal Biomass Residues 	Brand new automotive technologies	-Radical change in the technological paradigms -Renewable energy - Gasification of crude oil	Minimum environmental impact

Refining Scheme for an Inertial Scenario

PETROBRAS

BR

BR Refining Scheme for an Incremental Scenario

PETROBRAS

Latin America: Refining schemes

BR

	Raw material	Market	Process	Focus
	Increasing utilisation of heavy crudes, however with necessary modifications to process heavy oils and acidic oils without pre- treatment in the production fields.	Traditional fuels and growing market, however taking into account problems related to demand and new specifications.	Use of proven technologies, with special attention to hydrotreating and hydroconversion.	Integration with petrochemistry and minimum environmental impact.
<i>Scenario</i>	Inertial	Inertial	Incremental	Incremental/ Innovative

PETROBRAS

BR

Regarding the integrated concept, some challenges in terms of traditional processes, new processes and break-trough processes deserve special attention

Autothermal reforming

Authothermal reforming is an industrial reality

BR

PETROBRAS

Autothermal reforming - the future

Compact reformers

BR

PETROBRAS

smaller size and capital costs; compact design → offshore and remote sites increased thermal efficiency; modular and scalable;

Source: BP compact reformer based on Steam methane reformer

BR

DETROBRAS

Autothermal reforming - the future

Ceramic Membrane reactors

combines air separation and synthesis gas generation
processes into a single ceramic membrane reactor
reduction of capital costs
no need for a conventional oxygen plant
challenges: material development

SEM of a ceramic membrane developed under a GTL-Petrobras Network project

Fischer-Tropsch synthesis

Fischer-Tropsch synthesis

BR

ETROBRAS

Developed in 1920, at the Kaiser Wilhelm Institut für Kohlenforschung (Muhlheim-Ruhr)

It produces hydrocarbons from synthesis gas (CO + H₂)

It uses metallic catalysts from the pioneer work by Franz Fischer y Hans Tropsch

Original Catalyst: precipitated Co

Fischer-Tropsch synthesis

Products distribution versus alpha (degree of polymerisation)

BR

PETROBRAS

Fischer-Tropsch catalyst

Fischer-Tropsch catalyst is still a challenge for those developing commercial catalysts.

BR

ETROBRAS

 a) Catalyst must improve metallic phase dispersion, or rather, smaller particles of cobalt on the support;

b) Smaller particles → more efficient use of cobalt
 → reduced costs.

BR Fischer-Tropsch catalysts

/===;{0]:};7.\$

- a) FT catalysts rather low cobalt dispersion (average cobalt particle sizes of about 20 nm);
- b) Smaller particles \rightarrow more efficient use of cobalt \rightarrow lower costs;
- c) The preparation of catalysts with smaller cobalt particle sizes is possible. Nevertheless, these catalysts are often not as active as expected. The phenomenon of lower activity for smaller particles has been referred to as the cobalt particle size effect ;

BR

PETROBRAS

Fischer-Tropsch catalysts

TEM image of CNF showing Co particles with sizes of around 14 nm distributed over the fibers.

K. P. de Jong et al. J. AM. CHEM. SOC. 9 ,128, 12, 2006

Fischer-Tropsch catalysts BR PETROBRAS 4.0Activity (10⁻⁵ mol CO-g Co⁻¹s⁻¹ 3.5 3.0 2.52.0 1.5 1.0 0.5 0.0 Optimum \rightarrow 6 to 8 nm 15 25 Ö 5 10 20 30 Cobalt particle size (nm) average particle size Figure 7. The influence of cobalt particle size on activity normalized to the cobalt loading (220 °C, $H_2/CO = 2, 1$ bar). 100 TOF (10° s') 0 FT-catalysts are a good example of nanotechnology I 5 25 0 10 15 20 30 Cobalt particle size (nm) Figure 8. The influence of cobalt particle size on the TOF (220 °C, H₂/ CO = 2, 1 bar).

Fischer-Tropsch catalysts – the future

How can 6-8 nm Co particles be obtained ?

Ionic liquids are liquid compounds that present ionic-covalent crystalline structures or electrolites entirely composed of ions which are liquid at ambient temperature.

BR

1-butyl-3-methyl imidazole (BMI)

Fischer-Tropsch catalysts – the future

Co nanoparticles can be stabilised by lonic liquids via thermal decomposition of $Co(CO)_8$.

<u>50 nm</u>

BR

Conanoparticules dispersed in BMI.BF4

E. Falabella, J. Dupont, A. C. Santos et al. Disclosure request – NI06/023/2006

> The removal of long-chain n-paraffin from lubricating oils is essential to obtain a product with good cold-flow properties.

BR

DETROBRAS

>An attractive de-waxing procedure would result from catalytic de-waxing through isomerisation of the n-paraffin to branched isoparaffin, eliminating the yield loss associated with n-paraffin removal by cracking or solvent extraction

Challenge – a new catalyst capable of producing high quality products

BR

STRUCTURE	VISCOSITY (cSt@100°C)	VI	POUR POINT (°C)	"PRODUCT"
n-C26	3,24	188	+56,2	"Paraffin"
C4–C–C17 I C4	2,97	141	+20,8	"Paraffin"
C10–C–C10 I C5	2,68	126	-9,1	"Lube oil"
C10-C-C10 I C / \ C2 C2	2,69	120	-40	"Lube Oil"

 ✓ Branching impacts pour point – branch near the centre leads to lower pour point
 ✓ Multiple branching impacts VI

Pt/H-ZSM-22 seems to be the most promising catalyst to selectively isomerise FT-paraffin

ZSM-22 structure a = 14.105Å b = 17.842Å c = 5.256Å

ZSM-22 contains parallel tubular pores with an almost uniform cross section of ca. 0.45X0.55 nm

BR

ETROBRAS

On the Pt/H–ZSM-22 zeolite, the first methyl branching is formed preferentially at C2–C3 positions for decane and shorter n-alkanes and at C2–C3 or C5–C11 positions of longer alkanes

BR

ETROBRAS

The linear carbon chain penetrates with one end into a pore opening (pore mouth) or with both ends each into a different pore opening (key lock).

Pore mouth versus key-lock mechanism

BR

PETROBRAS

Key - lock Pore mouth В

Pore mouth versus key-lock mechanism

BR

PETROBRAS

Concept

BR

1=1:(0):1:745

Microreactors use the concept of *PI - process intensification* (reduction in plant size by at least a factor of 100) in which a given process is intensified whenever one enhances:

- Mass transfer

- Heat transfer

- Reaction rate

PI provides processes which are cleaner, safer, smaller and cheaper.

Microreactors

Main advantages of Microreactors

Reduction in linear dimensions
 Heat transfer coefficient increases orders
 of magnitude

Increase in the surface/volume ratio

Microchannels - 10.000 a 50.000 m²/m³

Conventional lab equipment, 1000 m²/m³

Industrial equipment, 100 m²/m³

Volume reduction

BR

ETROBRAS

Typical values are one or two orders of magnitude

Microreactors

The main reactions of the GTL process (Reforming and Fischer-Tropsch) seem to be very suitable for the technology of microchannels.

BR

a) Reforming is a very *fast* and *endothermal* reaction which requires a very high heat flow and short contact times for the intensification thereof;

b) Fischer-Tropsch synthesis is *highly exothermal*, requiring a fine temperature control to improve its selectivity.

Furthermore, the existence of remote and off-shore natural gas fields calls for compact technologies, which should be located in space-restricted areas, such as on offshore platforms, Floating Production, Storage and Offloading (FPSO) vessels, or mobile skids.

Microreactors – the catalyst

Reactor with milichannels or minichannels

BR

ETROBRAS

Minichannels are formed by stacking plates which are welded via "diffusion bonding". Crimped foils containing the catalyst are added afterwards and may be replaced.

BR

Microreactors – the catalyst BR PETROBRAS Fecralloy® Fe – stainless steel Cr 22%, AI 4,8%, Si 0,3%, Y 0,3%, C 0,03%, Fe balance ç 1000-Y, Zr OXIDATION TEMPERATURE SINTERED SURFACE OXIDE LAYER 950. SMALL WHISKERS LONG RANDOMLY 900. ORIEN ED WHISKERS SMOOTH OYICE LAYER o50 Fecralloy 8 12 16 20 24 **OXIDATION TIME (HOURS)** WD10 D000048 15 kV ×10.0K 3.00 m D752946 15 κν x8.00κ 3.75μm 1000323 15 kV x5.00K 6.00 m

 α -alumina needles are generated from the AI-containing alloy

BR

Microreactores

Microreactors

BR

PETROBRAS

Space envelope for 1000 bpd GTL Plant – 20m x 30m x 23m

Conclusions

> The refinery of the future is a rather sophisticated technological concept, requiring innovative technologies for its implementation;

BR

ETROBRAS

> Although inevitable, the introduction of such technologies will be carried out gradually;

≻The different raw materials (Natural Gas, Coal, Biomass) will be used according to their availability and logistic characteristics;

Conclusions

> XTL processes will be the basis for the refinery of the future;

BR

ETROBRAS

➢ New catalysts, using the concept of nanocatalysis/nanotechnology, as well as special zeolites, represent the future for XTL processes, mainly when Fischer-Tropsch and Hydroisomerisation are concerned;

The future points towards new reaction systems such as microreactors;

Atom

BR

ROBRAS

Place yourself at our service And instead of the fatal ashes Instead of the unleashed infernos of your wrath Instead of the menace of your terrible light Deliver to us your amazing rebelliousness for our grain Your unchained magnetism to found peace among men And then your dazzling light will be happiness, not hell Hope of morning, gift to earth...

Ode to the atom Pablo Neruda