II Simpósio Internacional de Climatologia da SBMET "Detecção e Atribuição de Causas para as Mudanças Climáticas na América do Sul"

Os Efeitos Diretos dos Aerossóis de Queimadas no Clima

Aline S. Procopio (aline@eq.ufrj.br) Escola de Química Departamento de Engenharia Bioquímica

N ~ 500 cm⁻³ CCN ~ 50-200 cm⁻³ BC ~ 0.1- 0.2 μg m⁻³

N ~ 500 cm⁻³ CCN ~ 50-200 cm⁻³ BC ~ 0.1- 0.2 μg m⁻³

N ~ 10.000 cm⁻³ CCN ~ 3.000-6.000 cm⁻³ BC ~ 7- 20 μg m⁻³

 $\mathcal{T}_{a\,(500\,\mathrm{nm})}$ ~ 3

EFEITOS DIRETOS NO CLIMA

Superfície

EFEITOS DIRETOS NO CLIMA

Superfície

EFEITOS DIRETOS NO CLIMA

AERONET radiômetros solares

Φ 0.340, 0.380, 0.440, 0.500,
0.670, 0.870, 0.940 e 1.020 μ m

$T_a \rightarrow 0,10 \text{ a } 3,00$

$PWV \rightarrow 1,50 \text{ a } 6,5 \text{ cm}$

AERONET

Modelo óptico espectral (24 λ) e dinâmico dos aerossóis de queimadas (12 τ_a) \rightarrow concentrado na dinâmica induzida pela variação da distribuição de tamanho, a um índice de refração complexo

AERONET

- Modelo óptico espectral (24 λ) e dinâmico dos aerossóis de queimadas (12 τ_a) \rightarrow concentrado na dinâmica induzida pela variação da distribuição de tamanho, a um índice de refração complexo
 - → OBJETIVO: possibilitar uma estimativa mais precisa da interação destas partículas com a radiação solar.

→ Resultados e validação:

Procopio, A.S., L.A. Remer, P. Artaxo, Y.J. Kaufman, B.N. Holben. *Modeled Spectral Optical Properties for Smoke Aerosols in Amazonia*. Geophysical Research Letters, vol.30, doi:10.1029/2003GL018063, 2003

O efeito dos aerossóis de queimada nos fluxos de radiação solar e de radiação fotossinteticamente ativa (PAR)

Razões entre os fluxos difuso e total e entre os fluxos direto e total para radiação solar total (a) e radiação PAR (b), limitadas a ângulos solares zenitais entre $-40^{\circ} e 40^{\circ}$.

espessura ótica dos aerossóis (500 nm)

As forçantes radiativas dos aerossóis de queimadas

$$FRA = (F \downarrow -F \uparrow)_{\text{sistema perturbado}} - (F \downarrow -F \uparrow)_{\text{sistema inicial}}$$

Procopio, A.S., P. Artaxo, Y.J. Kaufman, L.A. Remer, J.S. Schafer, B.N. Holben. *Multiyear Analysis of Amazonian Biomass Burning Smoke Radiative Forcing of Climate.* Geophysical Research Letters, vol.31, doi:10.1029/2003GL018646, 2004.

$FRA_{24h} = a(\tau_a)^3 + b(\tau_a)^2 + c\tau_a + d$								
	а	b	С	d	R^2			
ТОА	-0,95	6,71	-16,5	1,57	0,99			
atmosfera	0	-2,56	39,9	-3,58	0,99			
superfície	0	5,04	-51,6	3,92	0,99			

A taxa de aquecimento atmosférico

$FRA_{24h} = a(\tau_a)^3 + b(\tau_a)^2 + c\tau_a + d$								
	а	b	С	d	R^2			
TOA	para $\tau_a = 1,00 \rightarrow FRA$ TOA = - 9,2 Wm ⁻²							
atmosfera	<i>FRA</i> $_{ATM}$ = 33,8 Wm ⁻²							
superfície		$FRA_{SUP} = -42$	2,6 Wm ⁻²					

A taxa de aquecimento atmosférico

IPCC 2007

IPCC 2007

Superfície: - 38±1,5 W/m²

- 26 W/m²

- 23±2 W/m²

AERONET

 $r_F \rightarrow 13 a 30\%$

Análise espacial MODIS

estações seca 2001-2007

0

M 0 D I S

dT/dt (oC/dia) dry05

M 0 D I S

dT/dt (oC/dia) dry06

M 0 D I S

dT/dt (oC/dia) ago07

M 0 D I S

→ a magnitude das FRA é muito grande, mas similar com outras áreas (África e Índia), mas a área afetada na Amazônia é maior (entre 1,2 e 2,6 milhões de km²) → indicação da ocorrência de um desequilíbrio sem precedentes no funcionamento do ecossistema e no clima regional.

→ a magnitude das FRA é muito grande, mas similar com outras áreas (África e Índia), mas a área afetada na Amazônia é maior (entre 1,2 e 2,6 milhões de km²) → indicação da ocorrência de um desequilíbrio sem precedentes no funcionamento do ecossistema e no clima regional.

→ média dos últimos 9 anos na estação seca na Amazônia:
▲ aquecimento da troposfera induzido pelos aerossóis (0,2-0,5 °C/dia);
▲ FRA_{TOA} (-6 a -11 W/m²);

A diminuição do fluxo solar descendente à superfície (13-30 %).

→ a magnitude das FRA é muito grande, mas similar com outras áreas (África e Índia), mas a área afetada na Amazônia é maior (entre 1,2 e 2,6 milhões de km²) → indicação da ocorrência de um desequilíbrio sem precedentes no funcionamento do ecossistema e no clima regional.

→ média dos últimos 9 anos na estação seca na Amazônia:
^ aquecimento da troposfera induzido pelos aerossóis (0,2-0,5 °C/dia);
^ FRA_{TOA} (-6 a -11 W/m²);

A diminuição do fluxo solar descendente à superfície (13-30 %).

A presença de nuvens pode alterar significativamente a FRA, podendo inclusive trocar o seu sinal:
necessidade de melhorar a quantificação deste efeito

Obrigada!

Profa. Aline S. Procopio aline@eq.ufrj.br