Corn Grading, Cleaning, Milling and Cooking

Vijay Singh
Associate Professor
Department of Agricultural & Biological Engineering
University of Illinois at Urbana-Champaign, Urbana, IL

1st Brazil-U.S. Biofuels Short Course
São Paulo, Brazil
July 27 - August 7, 2009

Topics of Discussion

• Feedstock Grading and Storage
• Cleaning and Milling
• Cooking
Feedstock Storage: Farm or Elevator

- Corn is harvested in the US once a year (July-Sept)
- Storage of corn is required
 - For year round operation
 - Minimize the carbohydrate losses due to spoilage or sprouting
- Storage time is dependent on
 - Moisture content and grain temperature
 - Drying is generally required at the time of harvest

Recommended Moistures for Safe Storage

<table>
<thead>
<tr>
<th>Grain Type & Storage Time</th>
<th>Maximum Moisture, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shelled Corn & Sorghum</td>
<td></td>
</tr>
<tr>
<td>Sold by Spring</td>
<td>15.5</td>
</tr>
<tr>
<td>Stored 6 - 12 mos.</td>
<td>14</td>
</tr>
<tr>
<td>Stored more than a year</td>
<td>13</td>
</tr>
</tbody>
</table>
Feedstock Quality and Grading

- Corn delivered at plant is measured for
 - Moisture content
 - Mycotoxins
 - BCFM (broken corn and foreign material)
 - Test Weight
 - Grade

Grade Requirements

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum test weight per bushel (Percent)</th>
<th>Maximum Limits of Damaged Kernels</th>
<th>Broken corn and foreign material (Percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. No. 1</td>
<td>56.0</td>
<td>0.1 (Percent)</td>
<td>2.0 (Percent)</td>
</tr>
<tr>
<td>U.S. No. 2</td>
<td>54.0</td>
<td>0.2 (Percent)</td>
<td>3.0 (Percent)</td>
</tr>
<tr>
<td>U.S. No. 3</td>
<td>52.0</td>
<td>0.5 (Percent)</td>
<td>4.0 (Percent)</td>
</tr>
<tr>
<td>U.S. No. 4</td>
<td>49.0</td>
<td>1.0 (Percent)</td>
<td>5.0 (Percent)</td>
</tr>
<tr>
<td>U.S. No. 5</td>
<td>46.0</td>
<td>3.0 (Percent)</td>
<td>7.0 (Percent)</td>
</tr>
</tbody>
</table>

U.S. Sample grade is corn that:
(a) Does not meet the requirements for the grades U.S. Nos. 1, 2, 3, 4, or 5; or
(b) Contains stones which have an aggregate weight in excess of 0.1 percent of the sample weight, 2 or more pieces of glass, 3 or more crotalaria seeds (Crotalaria spp.), 2 or more castor beans (Ricinus communis L.), 4 or more particles of an unknown foreign substance(s) or a commonly recognized harmful or toxic substance(s), 8 or more cocklebur (Xanthium spp.) or similar seeds singly or in combination, or animal filth in excess of 0.20 percent in 1,000 grams; or
(c) Has a musty, sour, or commercially objectionable foreign odor; or
(d) Is heating or otherwise of distinctly low quality.
Mycotoxin Detection

- Use of black light to detect mold growth in corn
- It is the mold that fluoresces not mycotoxins
- Definitive detection of mycotoxins is done by HPLC
- In dry grind ethanol plant mycotoxins end up in DDGS (animal foodstuff)
- Mycotoxins potentially stress yeast and lower ethanol yields

Effect of Mycotoxins on Dry Grind Ethanol

Effect of Mycotoxins on Dry Grind Ethanol

<table>
<thead>
<tr>
<th>Wet Grains</th>
<th>Thin Stillage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-</td>
</tr>
<tr>
<td>100 ppb</td>
<td>55.2</td>
</tr>
<tr>
<td>204 ppb</td>
<td>47.2</td>
</tr>
<tr>
<td>342 ppb</td>
<td>58.1</td>
</tr>
<tr>
<td>772 ppb</td>
<td>74.4</td>
</tr>
</tbody>
</table>

Cleaning and Milling

- Cleaning
 - Prior to processing corn is cleaned for BCFM
 - Stones, metals, other debris
 - Can cause problems with screens and other equipment
 - Dust problems
 - Cleaning can be done by sieving or blowing air
Cleaning and Milling

• Milling
 – Starch is present in corn in small cells. Milling exposes cells for hydration, liquefaction and conversion to glucose
 – The objectives of Milling are
 • Split and remove the pericarp which is cutinized from outside and impervious to penetration of water
 • Disintegrate the inner portion of corn kernel into small pieces to make all the constituents readily accessible to enzymatic action
 • Minimize the quantity of very fine flour
 – prevent balling during slurring
 – prevent increase in amount of soluble solids in thin stillage

Milling Equipment

Hammer mill

Roller mill
Comparison between Roller Mill and Hammer Mill for Size Reduction

Ground Corn

- Roller Mill
- Hammer Mill

Ground Wheat

- Roller Mill
- Hammer Mill

Efficiency Comparison between Roller Mills and Hammer Mills

- Roller Mill
- Hammer Mill
Control of Particle Size

- Mill outlet is controlled by retention screen
- The screens are normally in size range of 0.125 (6/64”) - 0.172 inches (11/64”)
- Sieve analysis is done to determine the particle size of the ground flour

Hammer Mill Operation
Sieve Analysis of Corn Meal

Rausch et al. 2005. Trans of ASABE.

Effect of Grind Size on Ethanol Yield

V = 8 ft³; SA=24 ft²

V = 8 ft³; SA=48 ft²
Effect of Grind Size on Ethanol Yield

Effect of Grind Size on Ethanol Yield
Smaller screen sizes gave higher distribution of finer particle sizes

Post Liquefaction – Insoluble Starch

- Smaller screen sizes produced lower insoluble starch values after liquefaction.
- Factors that contribute insoluble starch:
 a) Incomplete gelatinization; b) Inefficient liquefaction process.

Effect of Grind Size on SSF – Fermentation Kinetics

- Smaller screen sizes gave faster fermentation kinetics and higher ethanol titers.

Note: Liquozyme dose, 0.024% w/w corn as is
Spirizyme Fuel, 0.055% w/w corn as is (typical industry dose)

% Solids Content of Corn Slurry

Liquefaction

- Jet cooked with split dosage
- Non jet cooked with single dosage
Jet Cooking with Split Dose

- Jet cooking with split dose
 - Primary 107°C for 3-6 minutes
 - Secondary 85°C for 90-120 minutes
 - Slurry Solids 32-35%ds
 - pH ideally 5.6-5.8
 - 30-35% thin stillage
 - Thermostable alpha amylase
 - 12-14 DE and <1500 cP viscosity
Flow Diagram for Liquefaction: Non Jet Cooked with Single Dosage

Non Jet Cooking with Single Dose

• Hold at 85°C for 60-120 minutes
 ➢ Slurry Solids 32-35%ds
 ➢ pH ideally 5.6-5.8
 ➢ 30-35% thin stillage
 ➢ Thermostable alpha amylase
 ➢ 12-14 DE and <1500 cP viscosity
Liquefaction Process

- Parameters
 - DE
 - Measure reducing ends of sugar
 - Viscosity
 - Flowability, thinning

Typical DE and Viscosity Progression

Effect of Thin Stillage on Alpha Amylase

Evaluation of Liquefaction Process

- Iodine test
- DE measurement
- Sugar Profiles
pH of Corn Mash

- pH values range from 3.3 to 7.1.
- The majority of pH values are between 5.5 and 6.5.

% DE of Corn Mash

- DE values range from 5.1 to 19.1.
- The majority of DE values are between 10 and 16.

Johal and Deinhammer, Novozymes, NA, Proceeding of Corn Utilization Tech Conf, 2006, p57-61
Saccharification/Fermentation Systems

- Complete Saccharification (Continuous and Batch)
- Pre-Saccharification followed by Simultaneous Saccharification/Fermentation
- Simultaneous Saccharification/Fermentation

Complete Saccharification

- Liquefact is hydrolyzed completely prior to starting the fermentation process (Glucose concentration > 93% w/w)
- Typical Operating Conditions and Parameters:
 - Temperature 140 - 144°F (60 - 62°C)
 - pH 4.0 - 4.5
 - Dry Substance 27 - 37%
 - Time 1 - 6 hr
 - Dose 0.08 - 0.4 GAU/g dry solids
Pre-Sacc Followed by SSF

- Liquefact is saccharified to a glucose level 5-25%w/w before being cooled and sent to fermentation.
- Pre-Sacc Typical Operating Conditions and Parameters:
 - Temperature: 140 - 150°F (60 - 66°C)
 - pH: 4.0 - 4.5
 - Dry Substance: 27 - 37%
 - Time (in pre-sacc): 1-24 hours
 - Dose: 0.13- 0.45 GAU/g dry solids

Simultaneous Saccharification/Fermentation (SSF)

- Saccharification to glucose and fermentation occur simultaneously
- Typical Operating Conditions and Parameters
 - Temperature: 86 - 92°F (30 - 33°C)
 - pH: 4.0 – 5.5
 - Dry Substance: 27 - 37%
 - Time: 30 - 70 hr
 - GA Dose: 0.3 - 0.6 GAU/g dry solids
Saccharomyces Cerevisiae

- View of typical fermentation yeast with microscope
- Yeast are identified partially by appearance
- Also identified by list of compounds used (sugars, vitamins, etc.)

Chemical Composition of Yeast

- Yeast cell is 75% water and 25% dry matter
 - Carbohydrate 18-44%
 - Protein 36-60%
 - Nucleic Acids 4-8%
 - Lipids 4-7%
 - Total inorganics 6-10%
 - Phosphorus 1-3%
 - Potassium 1-3%
 - Sulfur 0.4%
 - Vitamins Trace amounts
Glucose Uptake by Yeast

- Yeast can grow in presence or absence of oxygen
- When O_2 is present and not too much sugar is present
 - Yeast use all sugar for growth
- When O_2 is not present and amount of sugar present is high
 - Yeast produces ethanol
- Yeast cell mass produced under anaerobic conditions is less than 5% of the weight of initial sugar

Source: Alcohol Textbook, Ingledew, 1999

Diagram:

- Aerobic (respiration) (with oxygen)
 - Glucose → Glucose-6-phosphate
 - Glucose-6-phosphate → Pyruvate
 - Pyruvate → Krebs (TCA) Cycle & Oxidative Phosphorylation
 - Oxygen → NADH
 - Triose phosphate → CO$_2$
 - Yeast Biomass

- Anaerobic (fermentation) (without oxygen)
 - Glucose → Glucose-6-phosphate
 - Glucose-6-phosphate → Pyruvate
 - Pyruvate → Oxaloacetate
 - Oxaloacetate → Succinate
 - Ethanol + CO$_2$ → Yeast Fermentation Products
Preferential Sugar Utilization by Yeast

Fermentation

- Fermentation is the process of yeast converting glucose to ethanol and carbon dioxide in presence of oxygen
 - Process is moderated by several enzymes and coenzymes
 - Simplified equation

\[
\text{H(C}_6\text{H}_{10}\text{O}_5\text{)} \xrightarrow{\text{amylolytic enzymes}} \text{n C}_6\text{H}_{12}\text{O}_6 \xrightarrow{\text{yeast}} 2\text{n CH}_3\text{CH}_2\text{OH} + 2\text{n CO}_2
\]

MW = 162
Starch

MW = 180
Glucose

MW = 2 x 46
Ethanol

MW = 2 x 44
Carbon dioxide
Calculate Amount of Ethanol Produced

- How many kg of starch is used to produce 150 kg of ethanol?
 - $\frac{150}{0.511} = 293.54$ kg glucose
 - $\frac{293.54}{1.111} = 264.21$ kg starch

How Yeast Makes Ethanol

Glycolysis, the degradation of sugar to alcohol with production of energy (ATP) for cell growth

12 Enzymes convert ~90% of all produced glucose to ethanol and CO₂ under conditions of controlled oxidation/reduction balance

Source: Alcohol Textbook, Ingledew, 2009
Ethanol Production: Glycolysis Pathway

- Ethanol production is proportional to growth
- As sugar is used, energy (ATP) and pyruvic acid is made. The energy is used for cell production (growth), and the pyruvic acid is used as a sink for the reduced enzyme cofactor made in glycolysis which otherwise would accumulate
- Growing cells make ethanol 33 times faster than non-growing
- Pyruvic acid is converted through acetaldehyde to ethanol using reduced NADH + H+ and regenerating NAD
- Glycerol is made due to the accumulation of excess reducing power

How Yeast Makes Ethanol

- When a few molecules of these are taken by the cell for growth, this leads to increases in NADH and lower ethanol (not noticed)

Source: Alcohol Textbook, Ingledew, 2009
Differences in Yeast

- Yeast vary in maximum temperature for growth from about 25 to 39°C
- Yeast vary in morphology, size of 5 to 10 microns, roundness, chain formation
- Yeast vary in production of cogeners, especially esters and higher alcohols
- Yeast vary in growth response
- Yeast characteristics are checked by lab fermentations

Yeast Stress

Source: Alcohol Textbook, Ingledew, 1999
Osmotic Stress

- Due to high sugar concentration
- Increase in glycogen synthesis
- Increase in glycerol synthesis (instead of ethanol)
- If starch is left in form of dextrins and slowly converted to glucose by enzymes, osmotic pressure will be lowered

Loss of Viability in Stressed Yeast

- Always seems to occur in same three stages no matter what the cause
 - Loss of ability to form new cells
 - Loss of membrane integrity
 - Loss of intracellular enzymes able to chemically reduce many chemicals
Signs of Yeast Aging

- Increase in bud scar number
- Cell size
- Surface wrinkles
- Granularity
- Daughter cell being retained

Tests for Viability

- Viable yeast count
- Methylene blue viability test
 - Dead cells lose ability to keep methylene blue outside
 - Dead cells lose ability to reduce the dye to a colorless form very quickly
- Ability to form new cells on a thin layer of agar medium on a microscope slide is considered the reference method
- Flourescein diacetate dyes measure intracellular enzymes and give a good viability measure
Antinutritive Factors: Weak Acids

- Weak acids can have inhibitory effects on yeast if the free, unionized acid can enter the yeast cell
- Acids which enter the cell in the unionized form may ionize at the higher pH inside the cell
- Acetic acid is a potent anti yeast factor

Narendranath et al. 2001. Journal of Ind. Microbiology and Biotechnology 26:171-177

Nitrogen Requirements

- Amount of urea used
 - 8 mM (480 mg urea/L) to 16 mM urea (960 mg urea/L)
- Amount used depends upon “gravity” of mash (solids content)
- Virtually none remains after fermentation
The diagrams show the effects of fermentation time, temperature, and urea nitrogen addition on ethanol production. The left graph demonstrates the fermentation time (h) at different temperatures (°C) with and without urea nitrogen. The right graph illustrates the ethanol (% v/v) produced under the same conditions.

Source: Alcohol Textbook, Ingledew, 2009
Fermentation

- Continuous
- Batch

Continuous Fermentation

- Fresh substrate added and product removed at the same rate
- Reduce time required for filling, emptying and cleaning
- Simplify Control
- Operate continuously for several months without constant shutdown, cleaning and decontamination
- In reality many problems with contamination have been observed
 - Source of problem difficult to locate
Batch Fermentation

- Each fermentor is individually controlled
- Each fermentor is processed, cleaned and restarted with new batch of yeast
- Additional tanks are needed to maintain productivity
- Most of dry grind ethanol continuous fermentation plants have converted to batch fermentation

Yeast Propagation Tank

[Diagram showing ADY, Sugar, Nutrients, Antibiotics]
Typical Fermentor Fill

- Mash (90%)
- GA 2 dose
- Mash (70%)
- GA 1 dose
- Yeast
- Mash (5%)

Fermentation: Factors Affecting Ethanol Yield

- Losses in Mashing
- Cell growth
- Minor end products
- Infections
- Struck Fermentation
- Nutritional Deficiencies
Factors Affecting Ethanol Yield

• Losses in Mashing
 – Unconverted starch (due to poor milling)
 – Retrogradation of starch
 – Starch blinding by protein
 – Less than complete enzymatic hydrolysis
 – Starch found in DDGS (indicator of losses in mashing)
 – Use of heat damaged grains

Factors Affecting Ethanol Yield

• Higher Alcohols (Fusel Oils)
 – N-propanol
 – Amyl Alcohol
 – Iosamyl Alcohol
 – Iosbutanol
 – Phenethyl Alcohol

• These can be formed from amino acids
• Yeast strain, high temperature, increased aeration increased agitation and composition of medium leads to production of higher alcohols
Factors Affecting Ethanol Yield

• Infections
 – Recycle streams provide nitrogen and nutrient source but also cause infections
 – Wet milling process
 • Light steep water is used in fermentation
 – Dry grind process
 • Backset/Thinstillage is used in fermentation
 – Major reasons of use of recycle steams is for water recycling/pollution control
 • However, inhibitory levels of sodium ions, sulfite ions, lactic acid and acetic acid lead to yeast stress

Struck (Sluggish) Fermentations

• Rate of sugar utilization becomes extremely slow (especially towards the end of fermentation)
• Caused due to nutritional deficiency especially nitrogen and oxygen
Very High Gravity Fermentation

- Higher concentration of solids (glucose) in fermentation broth
- Yeast nutrition and oxygen play an important role
- In lab final ethanol concentration as high as 23% have been achieved in fermentation broth
- More ethanol produced per batch
- Less evaporation and dehydration required
 - Less energy usage

Specific Gravity Measurement

- °Brix
- °Balling
- °Plato
Instruments Used for Measuring Specific Gravity

- Refractometers
- Hydrometers

Percent Alcohol Determination

- Proof of Alcohol is calculated by multiplying “alcohol volume %” by 2
 - Example: 40% alcohol by volume = 80 degree proof
Ethanol Yield

• Ethanol producers like to look at gallons of ethanol produced from a bushel of corn
 – Generic weight of bushel of corn = 56 lb
 – Moisture content in corn = 14%
 – Starch content is 70%
 – Assuming 100% of starch is converted into ethanol
 • Ethanol yield will be 2.9 gallons/bushel
 – Typically yield is around 2.65 gallons/bushel (in dry grind ethanol plant)
 • In terms of efficiency of starch conversion, this would be 100 x 2.65/2.9 = 90% efficiency

Monitoring Rate of Fermentation

• Alcohol level at a given time using HPCL
• Time to a repeat Brix using refractometer
• Rate of pH change and final levels using pH meter
• Volumetric Productivity
Monitoring Rate of Fermentation

HPLC Chromatogram
Monitoring Yeast Performance

- Cell Count
- Viability
- Budding Cells