

Feedstock Storage: Farm or Elevator

- Corn is harvested in the US once a year (July-Sept)
- Storage of corn is required
 - For year round operation
 - Minimize the carbohydrate losses due to spoilage or sprouting
- Storage time is dependent on
 - Moisture content and grain temperature
 - Drying is generally required at the time of harvest

Recommended Moistures for Safe Storage

Grain Type & Storage Time	Maximum Moisture, %
Shelled Corn & Sorghum	
Sold by Spring	15.5
Stored 6 - 12 mos.	14
Stored more than a year	13

- Corn delivered at plant is measured for
 - Moisture content
 - Mycotoxins
 - BCFM (broken corn and foreign material)
 - Test Weight
 - Grade

Grade	Minimum test weight per bushel (Percent)	Maximum Limits of		
		Damaged Kernels		
		Heat Damaged Kernels (Percent)	Total (Percent)	Broken corn and foreign material (Percent)
U.S. No. 1	56.0	0.1	3.0	2.0
U.S. No. 2	54.0	0.2	5.0	3.0
U.S. No. 3	52.0	0.5	7.0	4.0
U.S. No. 4	49.0	1.0	10.0	5.0
U.S. No. 5	46.0	3.0	15.0	7.0
 U.S. Sample gra (a) Does not me (b) Contains sto sample weigh 2 or more case 	de is corn that: eet the requirement nes which have an ht, 2 or more piece stor beans (Ricinus (ance(s) or a comm	is for the grades U.S. aggregate weight in s of glass, 3 or more s communis L.), 4 or nonly recognized han	Nos. 1, 2, 3, 4, excess of 0.1 p crotalaria seeds more particles o mful or toxic sub	or 5; or ercent of the <u>a</u> (Crotalaria spp f an unknown stance(s), 8 or

	Wet Grains	Thin Stillage	
	0/0		
Control	_	_	
100 ppb	55.2	44.8	
204 ppb	47.2	52.8	
342 ppb	58.1	41.9	
772 ppb	74.4	25.6	

Murthy, G.S., Townsend, D.E., Meerdink, G.L., Bargren, G.L., Tumbleson, M.E. and Singh, V. 2005. Effect of aflatoxin B1 on dry grind ethanol process. Cereal Chem. 82:302-304.

Saccharification/Fermentation Systems

- Complete Saccharification (Continuous and Batch)
- Pre-Saccharification followed by Simultaneous Saccharification/Fermentation
- Simultaneous Saccharification/Fermentation

Chemical Compositi	ion of Yeast
Yeast cell is 75% water and	l 25% dry matter
– Carbohydrate	18-44%
- Protein	36-60%
- Nucleic Acids	4-8%
- Lipids	4-7%
 Total inorganics 	6-10%
 Phosphorus 	1-3%
Potassium	1-3%
• Sulfur	0.4%
– Vitamins	Trace amounts

- How many kg of starch is used to produce 150 kg of ethanol?
 - 150/0.511 = 293.54 kg glucose
 - 293.54/1.111 = 264.21 kg starch

Osmotic Stress

- Due to high sugar concentration
- Increase in glycogen synthesis
- Increase in glycerol synthesis (instead of ethanol)
- If starch is left in form of dextrins and slowly converted to glucose by enzymes, osmotic pressure will be lowered

Loss of Viability in Stressed Yeast

- Always seems to occur in same three stages no matter what the cause
 - Loss of ability to form new cells
 - Loss of membrane integrity
 - Loss of intracellular enzymes able to chemically reduce many chemicals

Signs of Yeast Aging

- Increase in bud scar number
- Cell size
- Surface wrinkles
- Granularity
- Daughter cell being retained

Tests for Viability

- Viable yeast count
- Methylene blue viability test
 - Dead cells lose ability to keep methylene blue outside
 - Dead cells lose ability to reduce the dye to a colorless form very quickly
- Ability to form new cells on a thin layer of agar medium on a microscope slide is considered the reference method
- Flourescein diacetate dyes measure intracellular enzymes and give a good viability measure

Fermentation

- Continuous
- Batch

Continuous Fermentation

- · Fresh substrate added and product removed at the same rate
- · Reduce time required for filling, emptying and cleaning
- Simplify Control
- Operate continuously for several months without constant shutdown, cleaning and decontamination
- In reality many problems with contamination have been observed
 - Source of problem difficult to locate

- Each fermentor is individually controlled
- Each fermentor is processed, cleaned and restarted with new batch of yeast
- Additional tanks are needed to maintain productivity
- Most of dry grind ethanol continuous fermentation plants have converted to batch fermentation

Factors Affecting Ethanol Yield

- Losses in Mashing
 - Unconverted starch (due to poor milling)
 - Retrogradation of starch
 - Starch blinding by protein
 - Less than complete enzymatic hydrolysis
 - Starch found in DDGS (indicator of losses in mashing)
 - Use of heat damaged grains

Factors Affecting Ethanol Yield

- Higher Alcohols (Fusel Oils)
 - N-propanol
 - Amyl Alcohol
 - Iosamyl Alcohol
 - Iosbutanol
 - Phenethyl Alcohol
- These can be formed from amino acids
- Yeast strain, high temperature, increased aeration increased agitation and composition of medium leads to production of higher alcohols

Factors Affecting Ethanol Yield

- Infections
 - Recycle streams provide nitrogen and nutrient source but also cause infections
 - Wet milling process
 - Light steep water is used in fermentation
 - Dry grind process
 - Backset/Thinstillage is used in fermentation
 - Major reasons of use of recycle steams is for water recycling/pollution control
 - However, inhibitory levels of sodium ions, sulfite ions, lactic acid and acetic acid lead to yeast stress

- Typically yield is around 2.65 gallons/bushel (in dry grind ethanol plant)
 - In terms of efficiency of starch conversion, this would be 100 x 2.65/2.9 = 90% efficiency

- Alcohol level at a given time using HPCL
- Time to a repeat Brix using refractometer
- Rate of pH change and final levels using pH meter
- Volumetric Productivity

