Dry Grind Corn Processing – New Technologies

Vijay Singh

Associate Professor Department of Agricultural & Biological Engineering University of Illinois at Urbana-Champaign, Urbana, IL

> 1st Brazil-U.S. Biofuels Short Course São Paulo, Brazil July 27 - August 7, 2009

Presentation Outline

- Corn Kernel Composition
- Corn Processing Terminology
- Conventional Dry Grind Process
- New Technologies

Components	3% amylase corn addition	Control Treatment
Crude Protein (%)	26.1 ± 0.2	25.8 ± 0.1
Crude Fat (%)	14.1 ± 0.1	13.6 ± 0.2
Crude Fiber (%)	6.6 ± 0.1	6.8 ± 0.1
Ash (%)	3.78 ± 0.1	3.35 ± 0.1
No significant differen	ce in composition of DDG:	5 for 3% amylase corn

Dry Milling (1 kg Procedure)							
Fractions	Control	0.1% Amy	1.0% Amy	10% Amy			
+5(Large Grits) -10+24	31.42	33.23	30.59	28.73			
(Small Grits)	29.88	28.91	31.79	31.46			
-24(Fines)	18.01	17.47	16.65	18.18			
Germ	13.02	12.88	13.32	13.79			
Pericarp	7.45	7.57	7.64	7.60			
Total	99.78	100.06	99.98	99.76			

Fractions	Control	0.1% Amy	1.0% Amy	10% Amy
Solubles (%)	4.52	4.40	4.38	4.82
Germ (%)	6.21	6.35	6.43	6.74
Fiber (%)	12.36	11.72	11.98	11.90
Starch (%)	67.24	67.66	67.33	66.19
Gluten (%)	10.25	10.18	10.16	10.65
Total (%)	100.59	100.31	100.29	100.30

Singh, V, Batie, C.J., Rausch, K.D. and Miller, C. 2006. Wet and dry milling properties of dent corn with addition of amylase corn. Cereal Chem 83:321-323

Feedstock Development: Transgenic Corn

- Reduces requirement of exogenous alpha amylase
- Only 3% amylase corn addition is required with dent corn for complete liquefaction
- No differences in DDGS composition between 3% amylase corn treatment and conventional treatment

New Technologies that Affect Dry Grind Ethanol Fermentation

Granular Starch Hydrolyzing (GSH) Enzymes These enzymes have high granular starch (raw starch or native starch) hydrolyzing activity Blend of alpha and glucoamylases Can liquefy and saccharify starch into glucose at low temperature (< 48°C) Stargen 001, Genencor International BPX, Novozymes NA These enzymes can be used for all cereal grains

Rye, wheat, broken rice ethanol production in Europe and Asia

Optimal Controller for SSF

- Lower concentration of glucose during SSF
- Less glucoamylase requirement during SSF
- Similar of higher final ethanol concentration

New Technologies that Affect DDGS Volume and/or Composition and Allow Recovery of Other Coproducts

_	cess)			
	Conv.	E-Mill	Soy Meal	CGM
Crude Prot. (%)	28.50	58.50	53.90	66.70
Crude Fat (%)	12.70	4.53	1.11	2.77
Ash (%)	3.61	3.24		
Acid Det.	10.8	2.03	5.95	6.88

Comparison of Wet and Dry Fractionation: DDGS Nutrient Content							
	Conventional	Dry	Wet				
Component	Dry grind	Fractionation	Fractionation				
Protein (%)	21	25	28				
Fat (%)	14	9	5.4				
Fiber (TDF)(%)	36	28	25				
Lysine (%)	0.73	0.63	0.91				
Lys, % of CP	3.4	2.5	3.3				
Phosphorus (%)	0.78	0.47	1.12				
Martinez-Amezcua, C., P characteristics of corn di solubles and different pro	Parsons, C.M., Singh, V. M stillers dried grains with s occessing techniques. Poul	lurthy, G.S. and Srinivasan, solubles as affected by amo try Sci. 86:2624-2630.	, R. 2007. Nutritional punts of grains versus				

Corn Fractionation Processes: Effect on DDGS

- Corn fractionation (wet or dry) prior to fermentation
 - Reduces volume of DDGS produced
 - Increased protein and reduces fiber content of DDG
- Wet fractionation process compared to dry fractionation process
 - Better nutritional quality of DDGS

J. Am. Oil Chem. Soc. 82:603-608.

Germ Composition								
Milling Process	Oil (%)	Protein (%)	Starch (%)	Ash (%)	Yield (%)			
Commercial Wet Milling A	40.89	14.03	8.00	2.20	7.50			
Commercial Wet Milling B	36.39	13.09	6.90	1.43	7.50			
Laboratory Wet Milling	38.77	18.38	11.60	2.30	7.51			
Wet Fractionation	36.43	21.36	6.20	ND	6.50			
Commercial Dry Milled	23.00	15.35	19.81	ND	12.00			
Dry Fractionation	18.06	17.46	21.20	ND	13.86			

Why are Phytosterols Valuable

- When consumed, Phytosterols can lower LDL-Cholesterol levels by 15-20% without the use of "statin" drugs
- This is estimated to reduce the risk of heart disease by 20-40%
- Recent NIH guidelines regarding the need to lower LDL-Cholesterol levels points to increasing demand for phytosterols

Corn Fractionation Processes: Recovery of Additional Coproducts

Corn fractionation (wet or dry) prior to fermentation

- Recover germ, pericarp fiber and endosperm fiber as additional coproducts
- Fibers can be used as feedstock for recovery of other valuable corpdoucts
 - Corn fiber oil
 - Corn fiber gum
- Wet fractionation process compared to dry fractionation process
 - Recovers germ with better composition

Sieving Results								
Size	Nominal Particle Size	% (w/w) Retained	Protein	Fat	NDF			
Category	(Microns)	on Screen	%	%	%			
Original	A 11	100	33.6	12.5	32 5			
Material	2 111	100	55.0	12.5	52.5			
24T	> 869	27	29.3	12.5	33.4			
34T	582 to 869	19.4	26.9	11.3	37.8			
35M	447 to 582	13.3	31.2	10.9	33.6			
60M	234 to 447	20.1	37.5	11.3	29.3			
Pan	< 234	20.2	42.2	12.9	19.0			

Srinivasan, R., Singh, V., Belyea, R.L., Rausch, K.D., Moreau, R.A. and Tumbleson, M.E. 2006. Economics of fiber separation from distillers dried grains with solubles (DDGS) using sieving and elutriation. Cereal Chem. 83:324-330.

Elutriation Results								
24T, Air Velocity	24T, Air Velocity = 3.35 m/s,				34T, Air Velocity = 2.55 m/s,			
<i>Yield (Lighter) = 27.8%</i>			Yield (Lighter) = 33.4%					
Fraction $\frac{\text{NDF}}{\cancel{6}}$ I	Protein Fa % %	ıt 6	Fraction	NDF %	Protein %	Fat %		
Lighter 53.3	19.3 7.	.05	Lighter	58.7	15.5	6.5		
Bulk 33.4	29.3 12	2.5	Bulk	37.8	26.9	11.3		
Heavier 32.6	35.6 14	4.2	Heavier	32.4	33.1	13.8		
35M. Air Velocity = 1.84 m/s.								
	Yield (Lighter) = 19.3%							
F	raction N	DF %	Protein %	Fat %				
Ι	ighter 5	6.0	16.5	8.5				
	Bulk 3	3.6	31.2	10.9				
H	leavier 2	7.6	35.4	13.1				
Srinivasan et al. 2005. Ce	Srinivasan et al. 2005. Cereal Chemistry 82:528-533.							

