International Workshop on Carbon Markets in Emerging Economies

22 November 2010

CDM in Brazil – CDM experiences in Brazil, drawing from diverse perspectives

UNICAMP

Arnaldo Walter NIPE-FEM / Unicamp & CTBE

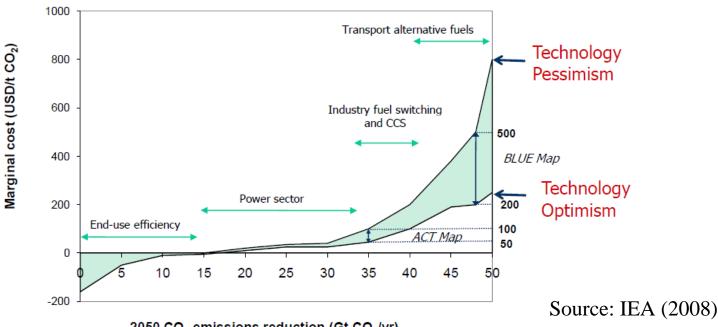
awalter@fem.unicamp.br

Camila Oliveira

camila.oliveira@bioetanol.org.br

Pedro Gerber pedro.machado@bioetanol.org.br

- Carbon markets what does it mean for emerging economies?
- ◆ CDM statistics, by October 2010.
- The CDM experience in Brazil.
- CDM projects related to electricity production from biomass, in Brazil (sugarcane residues, in particular).
- Concluding remarks.



- Carbon markets are related with mechanisms that allow flexible investments. The aim is the reduction of the mitigation costs, as opportunities and costs vary a lot from country to country.
- Most of the low cost opportunities are in developing countries/emerging economies (i.e., non-Annex I countries).
- In theory, such markets could induce economic and technological development. In addition, the market for some technologies would be amplified.

Why emerging economies?

2050 CO₂ emissions reduction (Gt CO₂/yr)

To bring emissions back to current levels by 2050 options with a cost up to USD 50/t are needed. Reducing emissions by 50% would require options with a cost up to USD 200/t.

 In emerging economies, low cost mitigation opportunities are, in theory, more easily found.

Existing carbon markets

 In the existing carbon markets the only real option for the emerging economies is CDM (as host countries).

Source: House of Commons (2010)

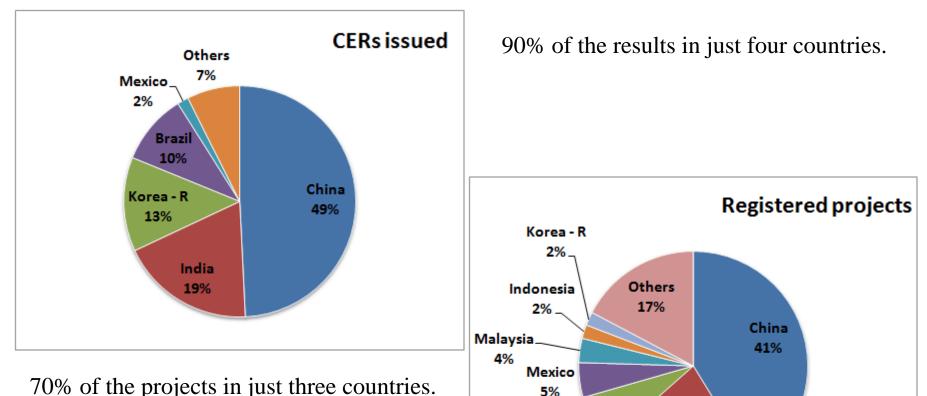
EU-ETS

Annex 1 countries with economies in transition. Potential J1 host countries

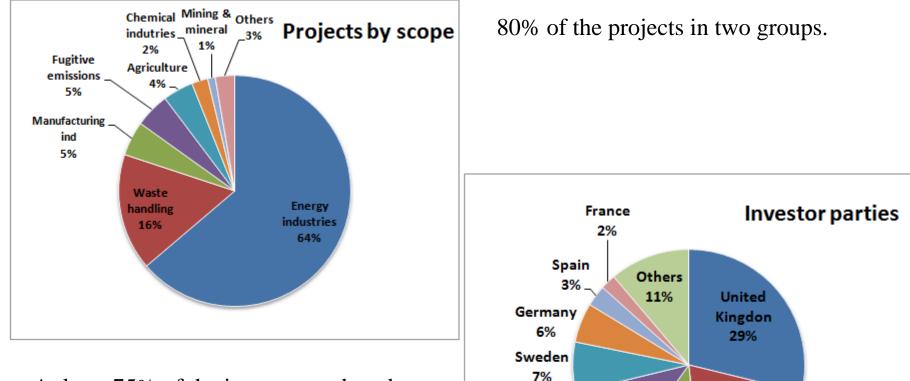
Trading System outside of Kyoto Protocol

- Non-Annex 1 countries. Potential CDM host countries
- Kyoto Signatories outside of EU-ETS

- The Clean Development Mechanism (CDM) was set up alongside the Kyoto Protocol and has been operational since 2006.
- Under the CDM, projects in the developing world that are deemed to reduce emissions can earn credits, each equivalent to one tonne of CO₂.
- These credits can be bought directly by industrialised countries to meet a proportion of their emission reduction targets under the Kyoto Protocol. A proportion of them may also be bought by businesses within the EU to use instead of EU ETS allowances in covering their emissions.



- 4,200 projects, of which 2,520 registered (175 rejected and 52 withdrawn).
- Annual average CERs of these projects = 396 million, with expected 1,860 million CERs until the end of 2012.
- The number of CERs shall surpass 2,900 million until the end of 2012.
- ◆ 2.9 GtCO₂ (expected result by 2012; considering 7 years on average) correspond to less than 1% of current GHG emissions per year (estimated as 50 GtCO₂).
- Considering 2,590 projects, 1,415 (~44%) are classified as large.



Brazil 7%

India 22%

70% of the projects in just three countries.

Netherlands

11%

Switzerland

19%

Japan

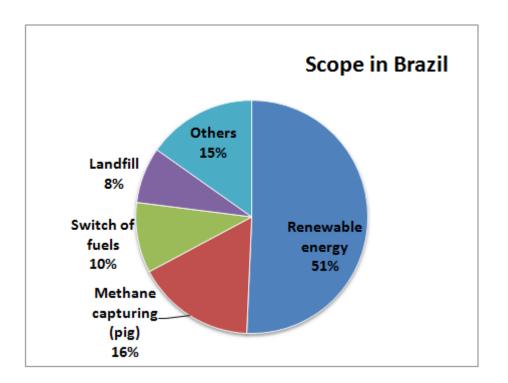
12%

At least 75% of the investment done by European countries.

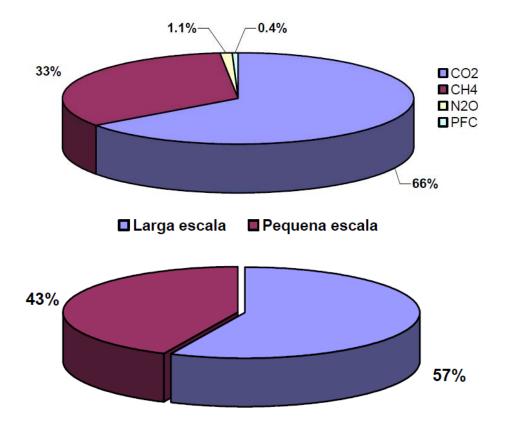
CDM statistics by November 2010 (4)

- Many countries with (very) few projects; a lot of them in Africa.
- Figure shows non-Annex I countries with less than 10 projects.
- Only 19 countries have more than 10 projects.

CDM statistics by November 2010 (5)


	# projecs	# methodologies	Projects/methodology
(01) Energy industries (renewable - / non-renewable sources)	1920	55	34,9 🛶
(02) Energy distribution	0	2	0,0
(03) Energy demand	30	17	1,8
(04) Manufacturing industries	145	27	5,4
(05) Chemical industries	68	19	3,6
(06) Construction	0	0	
(07) Transport	3	9	0,3
(08) Mining/mineral production	32	1	32,0 ←
(09) Metal production	8	7	1,1
(10) Fugitive emissions from fuels (solid, oil and gas)	145	8	18,1
(11) Fugitive emissions from production and consumption of			
halocarbons and sulphur hexafluoride	24	8	3,0
(12) Solvent use	0	0	
(13) Waste handling and disposal	490	18	27,2 🛶
(14) Afforestation and reforestation ← →	17	18	0,9
(15) Agriculture	128	5	25,6 🛶
TOTAL	3010	194	

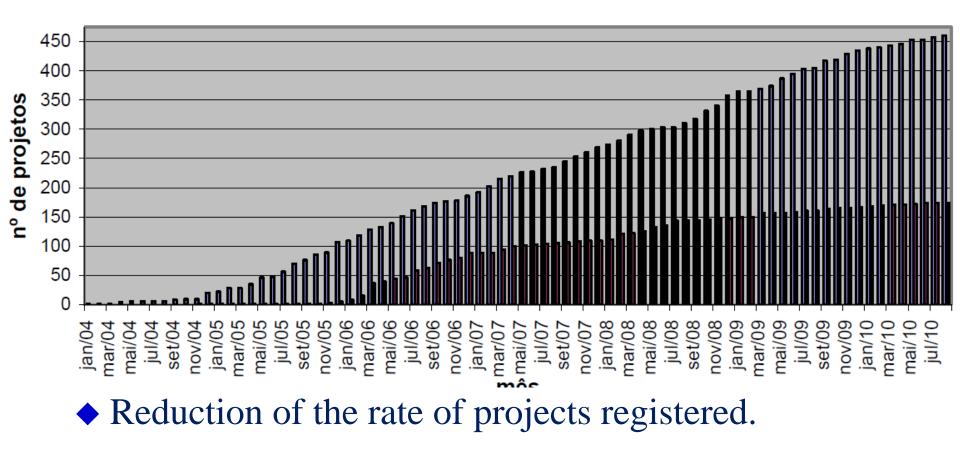
- Classification cause double counting of projects.
- There are more projects (99) in the "energy industries" group (among registered and requesting registration). In this set there are cogeneration units, small hydro, wind plants, etc.
- "Waste handling and disposal" is the second most important, with 76 projects.
- Other groups: "Agriculture" (41), "Fugitive emissions from fuels" (16), "Chemical industries" (6), "Metal production" (2), "Fugitive emissions from halocarbons and SF₆" (1).

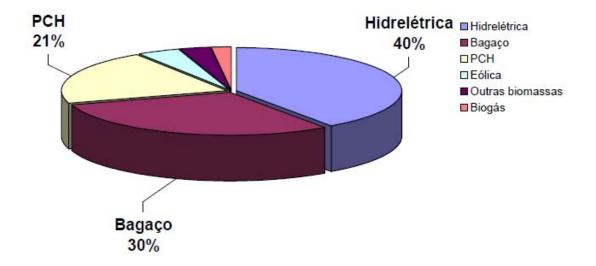


In Brazil, by August 2010, 51% of the projects were related to renewable energy (88 projects); no other project was registered after 2008.

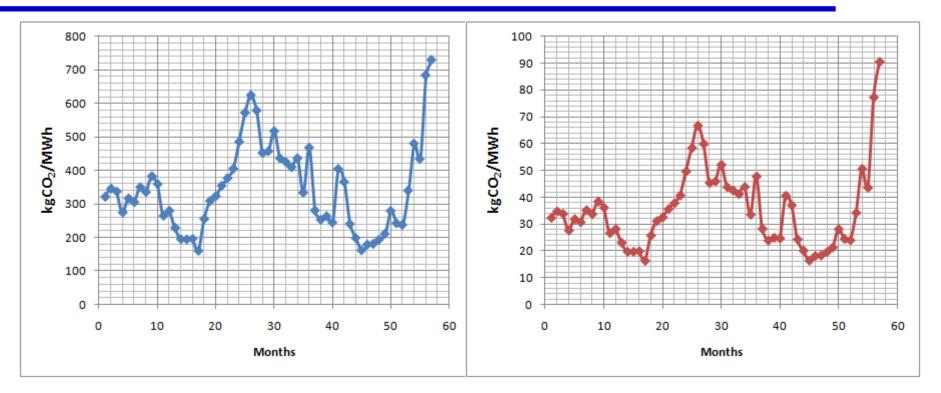
CDM projects in Brazil (1)

The bulk of the projects are related to the avoidance of CO₂ emissions.
57% of the overall projects are


classified as largescale ones.

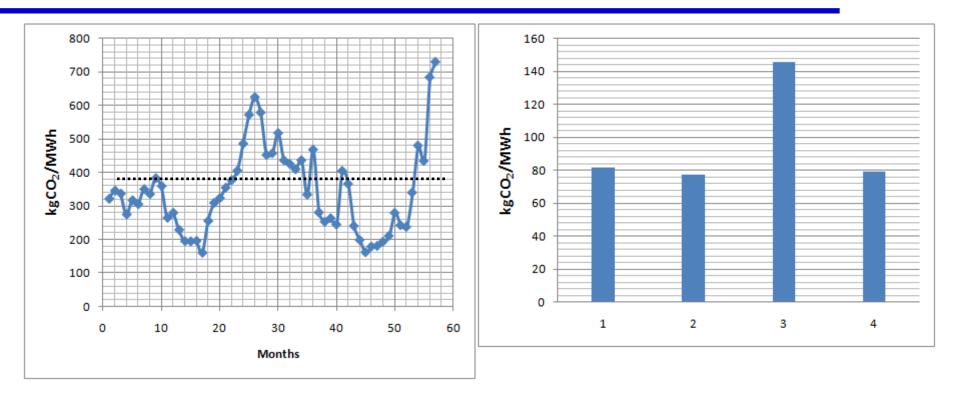

Validação

Registro



Regarding the capacity of the CDM projects related to renewable energy, 1,334 MW are due to sugarcane bagasse cogeneration.

Emission factors in Brazil (1)


Emission factor due to the electric sector operation, from January 2006 to September 2010. Left side, operating margin; right side, total average emissions.

Source: MCT (www.mct.gov.br)

UNICAM

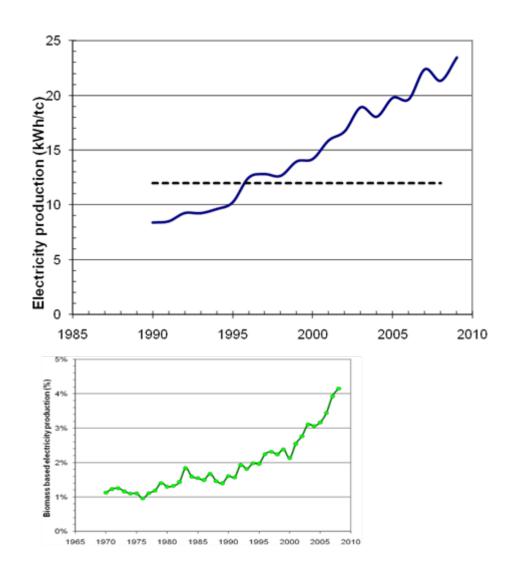
Emission factors in Brazil (2)

 Left side, operating margin from January 2006 to September 2010.

• Right side, construction margin in 2006-2009.

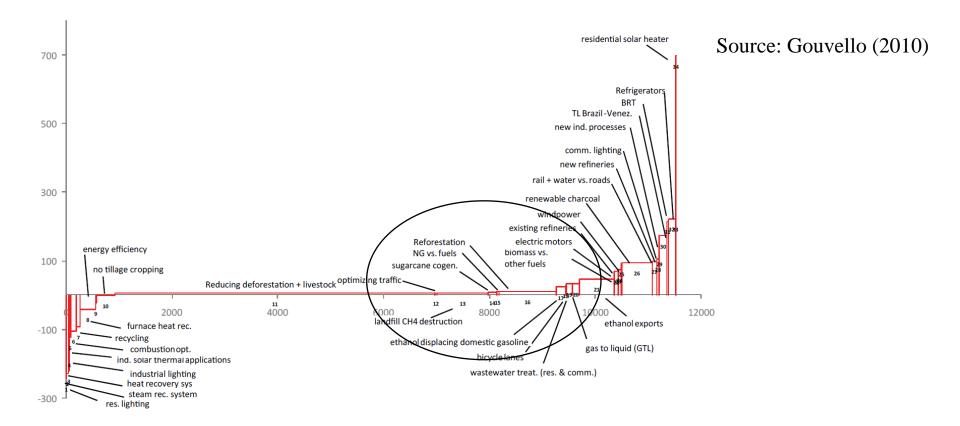
Source: MCT (www.mct.gov.br)

UNICAMP



- In the context of CDM projects, low avoided GHG emissions in Brazil is a drawback for electricity production from biomass.
- 35 projects related to sugarcane bagasse cogeneration and other UTEs based on biomass. Most of the projects submitted years ago.
- 1,334 MW of new capacity in the context of CDM projects is "not a bad result", considering that the current installed capacity in sugarcane mills is about 6 GW (in 314 mills), with more than 1.2 GW under construction (and 1.8 GW authorized).
- On the other hand, the evaluation "not so good result" is related with the existing potential.

Electricity production from biomass – 2



- Electricity production in sugarcane mills grew 5.7% during the last ten years, but the results are still modest regarding the potential.
- Current surplus production is about 12 kWh/tc (estimated as 39 kWh/tc in PNE 2030 and 116 kWh/tc in Gouvello, 2010).
- Constraints are mostly due to the interconnection costs and higher expected rates of return.
- CDM (alone) cannot solve these constraints.

Electricity production from biomass – 3

 Surplus electricity production: potential reduction of 158 MtCO_{2eq} in 20 years, with a break-even cost of 28 US\$/tCO₂.

- CDM results, so far, are modest (worldwide). CDM projects have been concentrated in few countries, and the scope of the projects is still narrow. CDM has induced sustainable development?
- In Brazil, the number of new projects has been reduced in last years. No other project related with electricity production from sugarcane residues has been presented.
- There are still crucial constraints for the deployment (of the potential) of electricity production from biomass (e.g., high interconnection costs and higher expected rate of return).

- The low amount of avoided emissions in Brazil, mainly due to the characteristics of the electric sector, and mostly regarding the predict construction margin, is also an important drawback.
- Higher prices of avoided emissions would motivated investments in the context of CDM. But the investments are occurring anyway even without this contribution.
- In practice, it seems that in Brazil the growth of electricity production from sugarcane bagasse is not related, in shortterm, with CDM.

- Thanks for your attention!
- ◆ <u>awalter@fem.unicamp.br</u>
- camila.oliveira@bioetanol.org.br
- pedro.machado@bioetanol.org.br