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Summary
• Fisheries and aquaculture play a vital but often poorly acknowledged role in global food security. Together, 

fisheries and aquaculture provide 4.3 billion people with ~15% of their average per capita intake of animal 
protein. By 2050, an additional 75 million tonnes of fish will be needed to help feed more than 9 billion people.

• The recent revolution in aquaculture, and continued improvements to management of capture fisheries, have 
potential to provide the additional fish required. However, warming of the world’s ocean could disrupt these 
important initiatives.

• Ocean warming will result in ‘winners’ and ‘losers. Changes in distributions of fish stocks as species seek their 
optimal temperatures, and as the habitats on which they depend are altered by higher water temperatures, will 
result in decreases in fisheries production in some countries and increases in others. Similarly, the prime locations for 
mariculture are expected to be altered by ocean warming, resulting in changes in yield patterns among countries.

• The effects of ocean warming on the contributions of marine fisheries and mariculture to food security should 
not be considered in isolation from those of other drivers. Rapid population growth, fish exports and poor 
fisheries management also affect availability of fish in many developing countries. These drivers often create 
a gap between how much fish is needed for good nutrition and local fish harvests. The main effects of ocean 
warming are to alter (increase or decrease) the gap.

• Changes to the gap due to ocean warming are expected to be greatest in tropical and subtropical countries. 
Adaptations are needed to minimize, and to fill, the gap.

• Adaptations to minimize the gap include reducing the impact of local stressors on fish habitats through improved 
integrated coastal management and marine spatial planning; keeping production of fisheries within sustainable 
bounds using the most appropriate management measures for the national context and a climate-informed 
ecosystem approach; and improving supply chains.

• The most important adaptation for filling the gap will be the expansion of environmentally sustainable mariculture 
(and freshwater aquaculture). However, for some developing countries, the most practical adaptations for filling 
the gap will be re-allocating some of the catch of large and small pelagic fish taken by industrial fleets to small-
scale fishers, and/or arranging for industrial fleets to land more of their catch in local ports.
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Ocean warming effect Consequences

Total production of fish from capture fisheries has 
levelled off at about 90 million tonnes per year

Aquaculture now supplies the remainder of the ~130 
million tonnes of fish used directly for food

An additional 75 million tonnes of fish will be needed to 
help feed more than nine billion people by 2050

Continued improvements to fisheries management will 
be needed but expanded aquaculture production will 
be required to meet most of the demand 

Ocean warming is expected to increase progressively 
due to continued greenhouse gas emissions

The plans to optimize production from marine fisheries 
and to expand mariculture are likely to be affected by 
ocean warming

Distributions of fish stocks will change as fish species 
seek their optimal ocean temperatures

Marine fisheries production will increase in some 
countries and decrease in others

Prime locations for mariculture will change as the 
ocean warms

Countries will become more or less suitable for mariculture 
and patterns of yields among countries will change

Rapid population growth, fish exports and poor 
fisheries management are reducing availability of fish 
per capita in many developing countries

A gap is emerging between how much fish is needed 
for good nutrition and how much fish is available locally 

Ocean warming will widen this gap in some countries 
and reduce it in others

Practical adaptations are needed to minimize, and to 
fill, the gap 

4.5.1 Introduction 
Fisheries and aquaculture play a vital but often poorly 
acknowledged role in global food and nutrition security 
(Béné et al., 2015, 2016). The ~130 million tonnes of 
fish1 currently produced from marine and freshwater 
capture fisheries and aquaculture used directly for 
human consumption (Figure 4.5.1) provide 4.3 billion 
people with about 15% of their average per capita 
intake of animal protein (HLPE, 2014). Furthermore, 
about 10% of the world’s population – predominantly 
from developing and emergent countries – rely heavily 
on fisheries and aquaculture for the income needed to 
buy food (Allison et al., 2013; HLPE, 2014). 

In recent decades, total production from capture 
fisheries has levelled off at about 90 million tonnes per 
year, with about 75% used directly for food (Figure 
4.5.1), because most marine resources are now fully 
exploited, and in some cases over-exploited (FAO, 
2014a). Rapid development of aquaculture has met 
the remainder of the demand (FAO, 2014a). In fact, the 
rate at which aquaculture has increased has enabled 
global fish supply to outpace population growth, and 
the supply of other sources of animal protein (De Silva, 
2012a; FAO, 2014a; Youn et al., 2014). Although 
capture fisheries will always need to be an important 

 1 Fish is used here in the broad sense and includes finfish, shellfish 
(invertebrates), sharks and rays

source of fish, particularly in developing countries (Hall 
et al., 2013), most of the expected future demand for 
fish will have to come from aquaculture (Merino et al., 
2012; FAO, 2014a). Rice and Garcia (2011) provide 
a potent example of estimated future demand – they 
calculate that an additional 75 million tonnes of fish will 
be required to provide more than 9 billion people with 
20% of their dietary protein requirements by 2050. 

There is optimism that continued improvements 
in aquaculture related to feed formulation, feeding 
technologies, farm management and selective breeding 
can supply the future needs for fish (FAO, 2014a). A 
particularly beneficial development is the reduced 
dependence on fish meal for feeds, which decouples 
marine fisheries and aquaculture production, paving 
the way for more wild fish to be used directly for human 
consumption. There is also the prospect that total 
sustainable production from capture fisheries could 
increase by up to ~20% with improved management 
(OECD-FAO, 2013; Costello et al., 2016). Similarly, 
there is a view that fish production from inland capture 
fisheries is under-estimated (Beard et al., 2011; Bartley 
et al., 2015) and that there is scope for freshwater fish 
resources to make significant additions to supplies of 
food fish (Youn et al., 2014), particularly among rural 
communities in developing countries. On the other 
hand, failure to address the many factors that affect 
the production of capture fisheries, including habitat 
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degradation, over-capacity and a range of socio-
economic drivers (Gillett and Cartwright, 2010; Hall, 
2011), could reduce present-day harvests from the wild 
and widen the gap to be filled by aquaculture.

Climate change poses 
an additional risk to the 
initiatives underway to 
supply more than 200 
million tonnes of fish for 
human consumption by 
2050. The best laid plans 
for better management 
of capture fisheries and 
technical improvements 
in aquaculture could be 
affected by changes to the 
environment beyond the 
control of managers. One of 
the main consequences of 
increased greenhouse gas 
(GHG) emissions – warming 
of the world’s ocean – has 
the potential to disrupt 
these plans. Because 
87% of capture fisheries 
production (FAO, 2014a), 
and 47% of aquaculture 
production (FAO, 2016), 
comes from marine 
and coastal (hereafter 
marine) waters, any such 
disruptions are expected to 
have a significant effect on 
global seafood production. 
The potential effects may 
be even more significant 
because there are limits 
to the expansion of inland 
aquaculture (which currently 
accounts for 90% of finfish 
aquaculture production) due 
to foreshadowed restrictions 
on availability of fresh water 
(FAO, 2014a). This means 
that a greater percentage 
of the additional 75 million 
tonnes of fish needed by 
2050 will have to come 
from marine aquaculture 
(hereafter ‘mariculture’).

Here, we review assessments of the projected effects of 
ocean warming on the contribution of marine fisheries 
and mariculture to food security and livelihoods. We 
focus mainly on developing country regions because they 

a)

b)

c)

Figure 4.5.1 a) World capture fisheries and aquaculture production, 1950–2012; b) world fish utilization and supply, 
1950–2012; and c) global inland aquaculture and mariculture production, 1980–2012 (source: FAO, 2014a).
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have the greatest dependency on fish for nutrition (Bell et 
al., 2009; Davies et al., 2009 ; Kawarazuka and Béné, 
2011; Wanyonyi et al., 2011; Lam et al., 2012; Barnes-
Mauthe et al., 2013; FAO, 2014a; Portner et al., 2014). 
This is not to say that the effects of ocean warming are 
insignificant for fisheries in developed countries. They are 
significant, as demonstrated by several studies from the 
North Atlantic and North Pacific (e.g. Cheung et al., 2012; 
Hollowed et al., 2013; Colburn et al., 2016; Hare et al., 
2016), and by our summary of global assessments of the 
effects of ocean warming on marine fisheries (para 4.5.5). 
Alterations in fish catch from developed countries, such 
as Japan and those in the EU and North America, due to 
ocean warming can also be expected to have impacts 
on food security in the developing country regions by 
influencing exports to developed countries. 

We begin with a brief summary of the expected effects of 
ocean warming on marine fish species and ecosystems, 
report the projected effects of such changes on the 
production of marine fisheries and mariculture, and 
conclude with the implications and practical adaptations 
to minimize the risks and capitalize on the opportunities. 

Our analysis is limited to ocean warming and does not 
consider the effects of ocean acidification on production 
from marine fisheries and mariculture; such effects are 
discussed by Hilmi et al. (2015) and have been shown to 
vary with taxa and region. The effects of global warming on 
inland aquaculture in general have been assessed by De 
Silva and Soto (2009) and De Silva (2012b); specific cases 
have also been considered by Phan et al. (2009), Nguyen 
et al. (2014, 2015) and Li et al. (2016), for example. 

We found winners and losers. Projected changes 
in the distribution and abundance of species, 
primary productivity supporting marine fisheries, and 
environmental conditions suitable for mariculture and 
proliferation of parasites, pests and diseases, indicate 
that fish production is likely to increase in some 
countries/regions and decrease in others (Harvell et al., 
1999; Allison et al., 2009; Barange et al., 2014; FAO, 
2014a; Hoegh-Guldberg et al., 2014). 

4.5.2 Effects of ocean warming on marine 
species and ecosystems 
Although some fish species can respond to the warming 
of the ocean described in Sections 3.11 and 3.12 by 
adjusting in situ (Maggini et al., 2011), the most widely 
documented impacts of climate change on species 
supporting marine fisheries are shifts in distributions to 

areas of preferred temperature (Last et al., 2011; Pinsky 
et al., 2013; Jung et al., 2014). Such range shifts are due 
largely to the direct effects of changes in temperature on 
the physiology and behaviour of species (Pörtner, 2001; 
Pörtner and Farrell, 2008; Pratchett et al., 2010; Section 
3.11) (Figure 4.5.2). In particular, changes in temperature 
can have significant effects on the timing of reproduction 
and development duration (phenology) and, therefore, 
dispersal of eggs or larvae. Temperature changes also 
affect individuals and populations through altered rates 
of metabolism, consumption and assimilation (Buckley, 
2013). In addition, changes in ocean temperature affect 
the size and hence productivity of species (Cheung et 
al., 2013a), which may require changes in management 
(Audzijonyte et al., 2013, 2014, 2016).

Figure 4.5.2  (A) Thermal performance curves typically have a 
characteristic, unimodal shape exemplified by performance as a function 
of body temperature. Often the reaction norm’s peak is shifted to the right 
of centre, such that performance increases relatively slowly up to Topt, but 
decreases rapidly above Topt. Although performance curves are generally 
modelled as functions, performance is typically only measured at a small 
number (4–8) of discrete temperatures in empirical studies. (B) A given 
increase in temperature (ΔT) results in an increase in nominal performance 
(ΔP) for a temperate fish and shellfish species, but the same temperature 
increase results in a decrease in nominal performance for a tropical species 
capable of living or surviving within a narrow temperature range (source: 
Dowd et al., 2015).
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In general, marine species are ‘tracking’ ocean warming 
by moving towards the poles, resulting in range 
extensions at poleward boundaries of their distributions 
(analogous to species invasions) and range contractions 
at equatorward boundaries (analogous to local species 
extinctions) (Chen et al., 2011; Poloczanska et al., 
2013; Bates et al., 2014; Section 3.11). These changes 
in distribution are evident in waters surrounding all 
continents, and for a wide range of marine organisms, 
e.g. phytoplankton (Thompson et al., 2009, 2015; 
Section 3.2), seaweeds (Wernberg et al., 2011; Nicastro 
et al., 2013; Section 3.3), invertebrates (Pitt et al., 2010; 
Chen et al., 2011) and fish (Cheung 2008, 2010; Last et 
al., 2011; Sunday et al., 2015; Sections 3.11 and 3.12).

Ocean warming can also have indirect effects on 
fisheries production by altering primary productivity (Le 
Borgne et al., 2011; Blanchard et al., 2012; Barange et 
al., 2014) and the benthic habitats that support fisheries 
(Hoegh-Guldberg et al., 2011; Waycott et al., 2011). 
Ocean warming can increase stratification of the water 
column (Ganachaud et al., 2011; Hoegh-Guldberg 
et al., 2014), reducing upwelling and the availability of 
nutrients required for the growth of phytoplankton at the 
base of the food webs supporting fisheries (Le Borgne et 
al., 2011). The contributions of some benthic habitats to 
fisheries production are particularly vulnerable to ocean 
warming. In particular, the corals that provide habitat 
for fish and invertebrates in many tropical developing 
countries are being adversely affected by bleaching due 
to elevated sea surface temperature (SST) (Pratchett et 
al., 2008; Hoegh-Guldberg et al., 2011, 2014; Ainsworth 
et al., 2016; Section 3.8). 

Changes in distribution, phenology and abundance of 
marine species related to the direct and indirect effects 
of ocean warming can have significant impacts on the 
structure and function of ecosystems (Tylinakias et 
al., 2008, Johnson et al., 2011; Marzloff et al., 2016). 
Where shifts in the distributions or abundances of 
species occur at different times and rates (Sunday et al., 
2012, 2015; Pecl et al., 2014), links between species 
can be broken allowing, for example, some species 
to escape from predators and exploit a wider range of 
environments (Jaeschke et al., 2012; Section 3.11). 

4.5.3 Effects on fish supply 
Changes in the production of marine fisheries and 
mariculture due to the direct and indirect effects of 
ocean warming need to be considered together with 
other factors affecting the supply of fish (Gillett and 

Cartwright, 2010; Bell et al., 2011a; Hall et al., 2011). In 
many developing countries, rapid population growth is 
driving a gap between sustainable fish harvests and the 
amount of fish needed to contribute to good nutrition 
(see para. 4.5.3.1). The effects of ocean warming have 
the potential to widen or reduce this gap. In other 
developing countries, trade policies that result in the 
majority of fish being exported limit local supplies of 
fish and overshadow the expected effects of ocean 
warming on availability of fish per capita (Delgado et 
al., 2003; Béné and Heck, 2005; Hobday et al., 2015). 
Fisheries management approaches can also have a 
profound effect on fish supply and the effects of poor 
management are likely to exceed the effects of ocean 
warming for many years to come.

Below, we summarize the importance of fish to food 
security and livelihoods, and the expected effects of 
projected ocean warming on marine fisheries, in five 
developing country regions. Several of these projections 
rely on model forecasts, which remain susceptible 
to some uncertainty and bias (Cheung et al., 2016b). 
Therefore, a measure of caution is needed in applying 
percentage projected changes to fish catch derived 
from these models. We also summarize the expected 
effects of ocean warming on mariculture worldwide and 
the key findings from several global assessments of the 
effects on marine fisheries.

4.5.3.1 Pacific Islands 
Traditionally, Pacific Island coastal communities have 
had some of the highest rates of fish consumption in the 
world (3-4 times the global average) and relied on fish 
to provide 50-90% of their dietary animal protein (Bell et 
al., 2009). Much of this fish has come from subsistence 
coastal fisheries based on coral reefs (Dalzell et al., 
1996; Pratchett et al., 2011). Rapid population growth 
in several Pacific Island countries is expected to alter this 
situation. By 2035, population growth alone will reduce 
the availability of fish per capita below the 35 kg of fish 
per person per year recommended for good nutrition 
of Pacific Island people (SPC, 2008; Bell et al., 2009). 
The direct effects of increased SST on fish metabolism 
projected to occur under a high GHG emissions 
scenario, and the indirect effects of ocean warming 
on the quality of coral reef fish habitats as a result of 
increased coral bleaching and ocean acidification, 
are expected to reduce production by ~20% by 2050 
and exacerbate this situation (Bell et al., 2011b, 2013; 
Pratchett et al., 2011).
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The rich tuna resources of the region provide a potential 
solution. Allocation of a relatively small percentage of the 
tuna catch from the exclusive economic zones of Pacific 
Island countries would provide the additional fish required 
(Bell et al., 2015a) (Table 4.5.1). However, the effects of 
ocean warming under a high GHG emissions scenario 
will make this solution easier to apply in some countries 
than in others. Preliminary modelling of the effects of the 
most abundant tuna species in the region, skipjack tuna 
Katsuwonas pelamis (Figure 4.5.3), indicates that there 
is likely to be an eastward shift in the relative abundance 
of this important fish species (Bell et al., 2013; Lehodey 
et al., 2013) (Figure 4.5.4). Over time, it should be easier 
for coastal communities in Kiribati, Cook Islands and 
French Polynesia in the central and eastern Western and 
Central Pacific Ocean (WCPO) to catch tuna than it is for 
coastal communities in the western WCPO, e.g. in Papua 
New Guinea (PNG) and Federated States of Micronesia. 
However, there will still be large (albeit reduced) quantities 
of tuna available in the western WCPO in the future for 
both export and domestic food security (Figure 4.5.4). 

Table 4.5.1 Estimates of coastal fisheries production based on coral reef area for selected Pacific Island countries, the amount of fish needed for food in 
2020 and 2035, and expected surplus (+) or deficit (-) in fish supply, relative to the recommended 35 kg per person per year or traditionally higher levels of 
fish consumption, for each country for each period. The quantities of tuna needed to fill the gap in fish supply and the percentage of average national tuna 
catch required to provide this tuna in 2020 and 2035 is also shown (after Bell et al., 2015a).

Country

Coastal fish 
production
(tonnes y-1)a

Fish needed for 
food 

(tonnes)b

Surplus (+)/ 
deficit (-) coastal 
fish (tonnes)c

Tuna needed for 
food (tonnes)

Average 
tuna 
catch 

(tonnes)d

Percentage 
of average 
tuna catch 
requirede

2020 2035 2020 2035 2020 2035 2020 2035

PNGf 98,760g 117,000 169,100 -18,200 -73,800 18,200 63,200h 597,657 3.0 10.6

Solomon Isi 27,610j 25,400 35,600 2,210 -7,990 0 7,990 144,454 0 5.5

Kiribatik,l 12,960 10,900 13,400 2,060 -890 4,900 6,370 330,177 1.5 1.9

Nauruk 130m 700 800 -570 -670 570 670 99,033 0.6 0.7

a Based on median estimates of sustainable fish harvests of 3 tonnes per km2 (Newton et al., 2007)
b Based on estimates in supplementary material for Bell et al. (2015a)
c Calculations for 2035 include a 2-5% reduction in the production of coastal fisheries due to the effects of climate change (Pratchett et al., 2011)
d Based on the 5-year average total tuna catch (all gear types) for the period 2009-2013, rounded to the nearest tonne. 
e Assumes that all tuna will come from industrial fishing within the EEZ and does not allow for catches from nearshore FADs, the contribution of bycatch, or the effects of climate 

change on tuna catch (Bell et al., 2013)
f Fish needed for food based on providing different quantities per capita for the urban, coastal/riverine and inland populations of PNG (see Bell et al., 2015a)
g Includes 17,500 tonnes of freshwater fish.
h Allows for freshwater pond aquaculture to supply 1 kg of fish per person per year by 2035 (Bell et al., 2011b), reducing the overall deficit in fish of 73,800 tonnes to 63,200 

tonnes
i Fish needed for food based on recommended fish consumption of 35 kg per person per year (see Bell et al., 2015a)
j Includes 2000 tonnes of freshwater fish
k Fish needed for food based on recent, traditional levels of fish consumption for rural and/or urban populations (Bell et al., 2009)
l National average incidence of ciguatera fish poisoning, renders several species of coral reef fish unfit for human consumption at some locations
m Based on reconstructions of catches of coastal fish by the ‘Sea around us’ project, University of British Columbia

Figure 4.5.3 Women selling skipjack tuna caught by small-scale fishers 
around Tarawa Atoll, Kiribati. © Johann Bell.
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4.5.3.2  South-east Asia 
Based on the ‘Sea Around Us2’ catch data (Pauly and 
Zeller, 2016), total marine fisheries catch in South-east 
Asia increased from around 2.5 million tonnes per year in 
the 1950s to more than 25 million tonnes in the 1990s. 
Catches have since stabilized at around that level, with 
a decreasing trend in the last decade.

The increase in marine and freshwater fish catch, and 
in the production from freshwater aquaculture and 

 2 www.seaaroundus.org

mariculture, has enabled per capita fish consumption 
in South-east Asia to increase from ~13 to 32 kg per 
person per year since 1961 (FAO, 2012). As a result, 
present-day fish consumption in the region is well in 
excess of the global average of ~19 kg per person 
per year (FAO, 2014a). Nevertheless, many fish stocks 
in the region have been over-exploited, with resource 
abundance at the end of the 20th Century being 5-30% 
relative to the level in the 1950s (Silvestre et al., 2003). 
Correspondingly, marine fisheries in the South China 
Sea area are now characterized by high numbers of 
fishing vessels and collectively employ millions of people 
(Table 4.5.2).
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Figure 4.5.4  Projected distributions of skipjack tuna biomass across the tropical Pacific Ocean under the IPCC SRES A2 emissions scenario. (a) Simulations 
for 2005, 2035, 2050 and 2100 derived from the SEAPODYM model (Lehodey et al., 2013), including projected average percentage changes for the boxed 
areas east and west of 170oE. (b) Recent average annual catches of skipjack tuna (2000–2010) from exclusive economic zones of selected Pacific Island 
countries and territories; FSM = Federated States of Micronesia, PNG = Papua New Guinea. (c) Estimated changes in biomass relative to virgin stock levels 
(dark blue), and incorporating fishing effort 1.5 times greater than the average for 1990 –1999 (light blue), for 2035, 2050 and 2100 (source: Bell et al., 2013). 
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Maintaining the significant contribution of marine 
fisheries and mariculture to per capita fish consumption 
and livelihoods in South-east Asia will be a formidable 
challenge as the ocean continues to warm. It will depend 
greatly on future GHG emissions and the level of effective 
fisheries management (Sumaila and Cheung, 2015). 
Under a high ‘business as usual’ emissions scenario 
(RCP8.5), harvests from marine fisheries in South-east 

Asia are projected to decrease by 10% to >30% by 2050 
relative to 1970-2000, depending on the country (Figure 
4.5.5) (Cheung et al., 2016a). The reduced harvests are 
expected to be driven by local extinctions as species 
change their distributions in response to the increases 
in water temperature. Overall, loss of more than 20% of 
the original fish species richness in South-east Asia is 
projected by 2050 (Jones and Cheung, 2015). 

Table 4.5.2 Summary of approximate number of fishing vessels and the number of people employed in marine and coastal fisheries (from 2000–2012, 
depending on data availability), together with estimated landed value in 2012, in selected countries/areas in the South China Sea (SCS) (source: Dyck and 
Sumaila, 2010; ; Sumaila and Cheung, 2015)

Country/Area No. fishing 
vessels

No  people 
employed

Landed value 
(USD x 1000)

China - northern SCS 92,300 648,800 9,807,035

Hong Kong 4,000 8,800 296,774

Indonesia 76,800 320,000 1,084,985

Malaysia - east coast, Sabah, Sarawak 24,600 56,000 1,219,133

Philippines –regions NCR, CAR, I, III, IV 117,000 627,000 817,335

Taiwan 231,600 271,600 2,731,292

Thailand 58,100 168,700 1,286,627

Vietnam 129,500 540,000 4,384,180

Figure 4.5.5 Multi-model ensemble projections of mean percentage changes in potential fish catch from South-east Asia by 2050, relative to recent catch 
levels (1971–2000), under the RCP 8.5 emissions scenario (source: Cheung et al., 2016a).
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Under-performing fisheries management in the region will 
exacerbate the impact of climate change. For example, a 
recent assessment of the effects of a business as usual 
emissions scenario combined with status quo levels 
of fisheries exploitation in the South China Sea, using 
trophodynamic models, projected that the biomass 
of several groups of fish species (including groupers, 
sharks, threadfin breams and croakers) could decrease 
by 50% or more (Sumaila and Cheung, 2015). On the 
other hand, a low GHG emissions scenario can reduce 
the impacts from climate change and ocean acidification 
on the marine ecosystem. Simultaneously, substantial 
reduction of fishing will rebuild over-exploited fish stocks. 
Both of these measures would be expected to have a 
positive impact on the biomass of most stocks. However, 
reducing effort would result in lower catches for several 
of the main species while stocks are rebuilt, creating an 
even wider gap in fish supply to be filled by mariculture 
(and freshwater aquaculture) (see Para. 4.5.4). 

4.5.3.3 East Africa and Western Indian Ocean 
The high population density in coastal and small island 
developing states in East Africa and the Western 

Indian Ocean (WIO) relative to coral reef area (Table 
4.5.3), coupled with poverty-driven dependence on 
fishing for food and cash, has caused degradation of 
these important fish habitats through over-harvesting 
and destructive fishing (Wells et al., 2007; Wafar et 
al., 2011; Samoilys et al., 2015). As a result, fisheries 
based on coral reefs now only make a modest 
contribution to per capita fish consumption, typically 
less than 5 kg per year, for communities living within 
25 km of the coast (Table 4.5.3). Seychelles and 
Mayotte are the exceptions. By 2030, coral reefs will 
provide even less fish per person due to predicted 
population growth. Ocean warming, which has 
caused widespread coral mortality (Obura, 2005; 
Ateweberhan et al., 2011) and reduced productivity of 
coral reef fisheries (Graham et al., 2007) in the WIO, 
is exacerbating the situation. Consequently, small-
scale fishers in the region are being encouraged to 
transfer more of their effort offshore to tuna and other 
oceanic fish species. Because tuna and other oceanic 
species fall within the mandate of the Indian Ocean 
Tuna Commission, increased access to some of these 
fish stocks, e.g. yellowfin tuna, by small-scale fishers 

Table 4.5.3 Estimated availability of coral reef fish per capita (kg) in 2015 and 2030 for coastal populations in countries from East African and the Western 
Indian Ocean.

Country

Coral 
reef area 

(km2)a

Estimated 
reef fish 

production 
(tonnes yr-1)b

Total 
human 

population 
in 2015c

2015 2030

Population 
within 

25 km of 
coastd

Reef fish 
per capita 

(within 
25 km of 

coast) (kg/
person/yr)

Population 
within 

25 km of 
coaste

Reef fish 
per capita 

(within 
25 km of 

coast) (kg/
person/yr)

Somalia 710 4,260 10,787,000 3,290,035 1.29 5,030,365 0.85

Kenya 1724 10,344 46,050,000 2,809,050 3.68 3,990,132 2.59

Tanzania 3580 21,480* 53,470,000 7,271,920 2.95 11,278,072 1.90

Mozambique 1860 11,160 27,978,000 9,148,806 1.22 13,549,245 0.82

Madagascar 2230 13,380 24,235,000 5,622,520 2.38 8,342,720 1.60

Seychelles 1690 10,140 96,000 96,000 105.63 101,000 100.40

Comoros 430 2,580 788,000 788,000 3.27 1,081,000 2.39

Mayotte (France) 985 5,910 240,000 240,000 24.63 344,000 17.18

La Reunion (France) 18.6 112 861,000 861,000 0.13 947,000 0.12

Mauritius 870 5,220 1,273,000 1,273,000 4.10 1,310,000 3.98

* Likely to be an over-estimate because large areas of Tanzania’s reefs have been destroyed by dynamite fishing (Wells, 2009; Slade and Kalangahe, 2015); a = sources: UNEP 
(2009) except Kenya (Samoilys et al., in press), Reunion (Nicet et al., 2015); Mayotte (Andréfouë et al., 2009); b =  calculated as total coral reef area in km x 6 tonnes (based on 
6.09 tonnes km-2 yr-1 for Kenya in 2006 (Samoilys et al., in press); c = UN World Population Prospects: 2015 Revision Vol. 1; d = source: UNEP (2009); e = UN World Population 
Prospects: 2015 Revision Vol. 1.
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will need to be accommodated through reallocation of 
a proportion of the catch of industrial fleets so that no 
net increase in catch occurs. However, some oceanic 
fish species in the WIO, such as skipjack tuna and 
kawakawa tuna, are not currently overfished and not 
subject to overfishing (IOTC, 2015).

Ocean warming is likely to affect this recommended 
adaptation to some extent. For example, preliminary 
modelling of the effects of higher water temperatures 
on yellowfin tuna, one of the large pelagic fish species 
commonly caught by small-scale fishers in the WIO 
(Herrera and Pierre, 2010; Kaplan et al., 2014), 
indicates that substantial changes in the distribution and 
abundance of this species are likely to occur in the future 
(Senina et al., 2015). Relatively good confidence can be 
placed in these projections because the SEAPODYM 
model (Lehodey et al., 2008) used for the simulations 
predicts the historical catch of yellowfin tuna in the main 
fishing grounds well (Figure 4.5.7). 

The modelling indicates that stronger stratification will 
occur in the upper water column, leading to reduced 
production of phytoplankton, zooplankton and 
micronekton in the food web that supports yellowfin 
tuna in tropical regions of the WIO. The simulations 

show that distribution of larval yellowfin tuna is likely 
to become less dense in the equatorial region and 
increase in the western Arabian Sea by the middle of 
the century. These changes are driven by a favourable 
increase in water temperature in the western Arabian 
Sea and an unfavourable and strong decrease in 
phytoplankton (primary production) in the equatorial 
region. By 2050, the density of adult yellowfin tuna is 
projected to decrease throughout the WIO, with the 
greatest decreases occurring from Kenya southward 
(Figure 4.5.6). Simulations at a higher resolution are 
now needed to confirm the results from the preliminary 
modelling.

4.5.3.4 West Africa 
Although annual per capita fish consumption in most 
countries in West Africa is lower than the global average 
(Table 4.5.4), several nations in the region have a 
relatively high dependence on fish and fisheries for 
food and income due to the scarcity of other sources 
of animal protein (Brashares et al., 2004; Smith et al., 
2010). Fish is also an important source of the essential 
micronutrients and vitamins missing from local staples 
(rice, maize and cassava), in particular, iron, iodine, 
zinc, calcium and vitamins A and B (Roos et al., 2007; 
Kawarazuka, 2010; Golden et al., 2016). 

Figure 4.5.6 Reconstruction of the history of yellowfin tuna dynamics and fisheries in the Western Indian Ocean using the SEAPODYM model and results 
presented in Senina et al. (2015). The panels show the average spatial distribution of yellowfin tuna density for three different life history stages: a) larvae,  
b)young fish caught by purse seine, and c) adults caught by longline. The locations of catches of young fish made by purse seine are shown with circles on 
panel b) (largest circle radius corresponds to a catch of 200 tonnes) and the locations of catches of adults by longline are shown with circles on panel c) 
(largest circle radius corresponds to a catch of 10 tonnes). 

a) b) c) 
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Figure 4.5.7 a) Projected changes in distribution of 
adult yellowfin tuna biomass in the western Indian 
Ocean between 2005 and 2050 for a ‘business 
as usual’ high emissions scenario (IPCC RCP8.5) 
using SEAPODYM and the IPSL Earth model forcing 
simulations (source: Senina et al., 2015); b) estimated 
changes in biomass relative to original unfished 
stock levels between 2005 and 2050, and estimated 
average catch of  yellowfin tuna (YFT) for the 
exclusive economic zones of selected countries in 
East Africa/Western Indian Ocean. Catch data were 
obtained from the Indian Ocean Tuna Commission 
and combine both industrial catches from the geo-
referenced catch-and-effort dataset and artisanal 
catches from the nominal catches dataset (see 
http://iotc.org/documents/all-ce-files and http://iotc.
org/documents/nominal-catch-species-and-gear-
vessel-flag-reporting-country, respectively, for an 
explanation of possible errors involved in combining 
these datasets).

a) b) 

Table 4.5.4 Estimated annual average per capita food fish supply in West African countries (2007–2011), together with the average volume of fish taken by 
distant water fishing nations (DWFNs) licensed to fish in a nation’s exclusive economic zone, and volume of fish exported, per year. 

Country
Fish supply  

(kg/capita/year)ª
Fish caught by DWFNs 

(tonnes)b
Fish exports 

 (tonnes)c 
Sierra Leone 33.2 34, 900 5,600

Gambia 28.9 63,900 3,300

Ghana 26.5 1,700 22,400

Senegal 25.2 281,000 108,200

Côte d’Ivoire 17.5 91,500 40,600

Nigeria 16.0 17,000 22,700

Cape Verde 11.1 3,300 14,500

Guinea 9.4 555,300 7,600

Mauritania 9.2 1,640,200 149,700

Togo 6.8 33,000 1,500

Benin 3.6 3,500 600

Liberia 3.2 71,400 100

Guinea Bissau 1.8 198,600 4,400

a based on fish food supply data (source: FAO, 2015)
b annual average catch between 2006 and 2010 extracted from the Sea Around Us catch reconstruction database (www.seaaroundus.org)
c source: FAO (2016) (http://www.fao.org/fishery/statistics/global-commodities-production/query/en)
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Some countries in the region gain government revenue 
from licensing distant water fishing nations (DWFNs) 
targeting small pelagic fish, squid and cuttlefish within 
their exclusive economic zones, or from exporting 
substantial quantities of fish (Table 4.5.4). Although 
revenues from licences and exports can boost 
purchasing power to buy food, there is concern that the 
focus on revenue has been at the expense of long-term 
economic development and food security (Trouillet et 
al., 2011; Belhabib et al., 2013, 2014). 

Population growth is expected to result in a significant 
increase in demand for fish in West Africa. For example, 
twice as much fish will be needed by Benin and Liberia 
by 2050 (Lam et al., 2012). Regrettably, present-day 
fisheries management, trade and distribution practices 
will not be able to deliver the fish required in the future 
(Delgado et al., 2003, Béné and Heck, 2005). Modelling 
also indicates that there will be a shortfall in fish supply 
for all countries in West Africa due to climate change by 
2050 (Lam et al., 2012). 
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Figure 4.5.8 Percentage 
of forecasted fish demand 
expected to be supplied by 
catches from the wild in 
West African countries by the 
2050s under a high emissions 
scenario (SRES A1B) (dark 
blue) and assuming that 
emissions can be reduced 
to the year 2000 level (light 
blue). Future fish demand was 
estimated using current per 
capita fish consumption and 
projected national population 
growth (United Nations, 2009).

Figure 4.5.9 Fishermen in Cape Verde off the western coast of the African continent. © Dyhia Belhabib.
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Continued high GHG emissions are expected to increase 
the gap further (Figure 4.5.8) (Lam et al., 2012), with 
the largest differences between forecasted demand for 
fish and projected fish catch occurring in Benin, Côte 
d’Ivoire, Nigeria and Western Sahara. Across the region, 
the potential reduction in total annual landings by the 
2050s under a high emissions scenario is estimated to 
be 670,000 tonnes (i.e. a reduction of 26% compared 
to current levels) (Lam et al., 2012). For the EEZs of the 
six countries located closest to the equator (Ghana, 
Côte d’Ivoire, Liberia, Togo, Nigeria and Sierra Leone), 
catches are projected to be reduced by around 50%. 
The projected decreases are due to the expected shifts 
in distribution of fish species in response to higher water 
temperatures, and a decrease in net primary productivity 
in the tropical region by the 2050s (Sarmiento et al., 
2004; Bopp et al., 2013). 

Reduced future landings of fish in West Africa are not 
only expected to have implications for food security, 
they will affect the economies of countries that are 
highly dependent on fish exports, such as Mauritania 
and Senegal. In this region, narrowing the gap in the fish 
needed for local food security and reducing the burden 
involved in importing fish will depend on rebuilding 
overfished or depleted stocks, reducing post-harvest 

losses and ensuring that a sufficient proportion of the 
region’s rich small pelagic fish resources are allocated 
for local consumption (FAO, 2014a). It will also depend 
on increasing the currently low capacity of fishing 
communities (Belhabib et al., 2016) to adapt to climate 
change (Figure 4.5.9). 

4.5.3.5 Central and South America 
Consumption of fish is relatively low in several Latin 
American countries (Flores, 2014) due to ready access 
to other animal protein and cultural preferences (Table 
4.5.5). However, the region makes a substantial 
contribution to the global supply of fish, and the supply 
of fish meal for mariculture, freshwater aquaculture and 
animal husbandry (Gasalla and Castro, 2016). Overall, 
the wide variety of marine fisheries in the region, which 
range from the world’s largest fishery (Peruvian anchovy) 
to squid fisheries in both the Pacific and Atlantic Oceans, 
to numerous small-scale coastal fishing activities, have 
yielded annual catches exceeding 10 million tonnes for 
several decades (FAO, 2016). 

Harvests from the large fisheries in Peru and Chile, and 
fisheries in Brazil and Argentina, vary significantly from 
year to year, however, due to the profound effects of 
the El Niño Southern Oscillation (ENSO) (Bakun, 1993; 

 Table 4.5.5 Recent population, total fish catch and patterns of per capita fish consumption for selected countries in Latin America (source: FAO, 2014a; 
Flores, 2014).

Country Population in 2012
(million)

Total fish catch in 
2012 

(tonnes)

National fish 
consumption
(person-1 yr-1)

(kg)

Trend in fish 
consumption

Argentina 41,900,000 7380,00 5.0 Stable

Brazil 198,700,000 842,900 11.2 + 6 kg in 10 years

Chile 17,460,000 2,572,881 6.4 Stable

Colombia 47,700,000 75,651 6.1 +2.1 kg in 6 years

Guyana 800,000 3,900 34.0 Stable

Honduras 7,930,000 8,300 3.5 Increasing

Mexico 120,800,000 1,581,579 13.2 Stable

Nicaragua 5,920,000 33,850 7.5 Stable

Panama 3,840,000 176,649 25 Stable

Perú 28,990,000 4,807,923 19.0 Increasing

Uruguay 3,400,000 76,162 6.0 Stable

Venezuela 29,950,000 213, 069 6.5 Increasing
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Sharp and McLain, 1993; Garcia et al., 2004). This is 
illustrated best by the effects of ENSO on the production 
of Peruvian anchovy: catches fall dramatically during El 
Niño events when weakening of the south-east trade 
winds limits the upwelling of the nutrient-rich waters 
required to support a high biomass of this species, 
but increase dramatically when strong upwelling 
recommences under La Niña conditions (Daw et al., 
2009; Arias Schreiber et al., 2011) (Figure 4.5.10). It 
remains to be seen whether ocean warming will change 
the effects of La Niña events on the Peruvian anchovy 
fishery and the strength of the upwelling involved. It is 
interesting to note, however, that Barange et al. (2014) 
project declines in fish production in Peru based on 
a model incorporating upwelling systems. Maximizing 
the sustainable benefits of this globally significant 
fishery will continue to depend on applying the various 
strategies identified to cope with great variation in 
abundance due to climatic variability (Arias Schreiber 
et al., 2011).

In contrast, ocean warming and the knock-on effects 
on ocean circulation and stratification on primary 
production (Hoegh-Guldberg et al., 2014) are expected 
to disrupt fishing patterns for a variety of other marine 
fisheries in the region. The effects of ocean warming 
are expected to be particularly strong in South Brazil 
and Uruguay (Popova et al., 2016). Elsewhere, the 
impacts of ocean warming are expected to be mixed. 

For example, catches of 10 of the top 12 fish species 
caught in Mexico are projected to decline by 2050 
under a high GHG emissions scenario (Sumaila et al., 
2014); landings by small-scale fisheries are projected 
to decrease in tropical areas as species move poleward 
in response to thermal stress (Cheung et al., 2010) and 
sea-level rise reduces the extent of coastal fish nursery 
habitats (Costa et al., 1994; Canziani et al., 1998); 
Pacific and Atlantic sardines are expected to continue 
to move into cooler and deeper waters (Gasalla, 
2012; Silva et al., 2015); skipjack tuna are likely to be 
more abundant in the Inter-American Sea and other 
productive oceanic areas (Muhling et al., 2015); and 
jumbo squid are expected to continue to be caught 
more commonly by Peruvian and Chilean small-scale 
fisheries (Rodhouse et al., 2014). 

The mixed responses of species to ocean warming in 
Central and South America will result in advantages for 
some countries and disadvantages for others. Artisanal 
fishers in Latin America dependent on coastal fish 
species for food and income are likely to suffer hardship 
where species move poleward, because the restricted 
mobility of fishers will prevent them from operating further 
afield to target the usual stocks. In other locations, there 
may be enhanced opportunities for livelihoods through 
creation of more sport fishing enterprises targeting 
increased abundances of species of interest to anglers.

Figure 4.5.10 North-central and southern stock Peruvian anchovy landings between 1959 and 2008 in relation to El Niño events (source: IMARPE).
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4.5.4 Effects on mariculture 
For the past two decades, most mariculture production 
has occurred in the tropics and sub-tropics and been 
dominated by seaweed and molluscs (De Silva and 
Soto, 2009; FAO, 2014a). Substantial shrimp farming 
also occurs in tropical and subtropical coastal and 
estuarine areas (Ahmed and Diana, 2015) (Figure 
4.5.11), supplying >70% of shrimp marketed globally 
(Benzie, 2009) (Figure 4.5.12). However, all shrimp 
culture depends on feeds containing fish meal. 

The rapid development of aquaculture during recent 
decades is expected to continue, and will need to 
provide most of the increasing demand for fish (FAO, 
2014a) (Figure 4.5.13). It remains to be seen whether 
more finfish will be produced through mariculture 
in the future – at present, only 10% of farmed finfish 
production occurs in coastal waters (FAO, 2016). 
Expansion of finfish aquaculture in fresh water will 
become increasingly difficult unless environmentally 
sustainable cage culture can be accommodated 

Figure 4.5.11 Trends in shrimp production, in selected years, in major producing countries from 2000 onwards (source: FAO, 2014b).

Figure 4.5.12 Harvesting  shrimp 
(Penaeus monodon), Chilaw, Sri 
Lanka. © Sena De Silva. 
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in water bodies impounded for other purposes – a 
process that has already begun in some developing 
countries (Abery et al., 2005; Blow and Leonard, 
2007; De Silva and Phillips, 2007). But mariculture of 
finfish also faces limitations because low-cost farming 
methods are largely restricted to sheltered coastal 
areas. Although technology and computer simulations 
exist for offshore expansion of mariculture by anchoring 
large sea cages in open ocean areas (Duarte et al., 
2009), such developments are often likely to be 
beyond the financial resources of developing nations, 
which have the greatest needs for fish. Nevertheless, 
it is perhaps inevitable that the proportion of farmed 
finfish produced by mariculture will need to increase.

Recent assessments indicate that ocean warming 
can be expected to affect plans to expand mariculture 
both directly and indirectly (De Silva and Soto, 2009; 
De Silva, 2012b). The main direct impacts are likely 
to be caused by alterations in the suitability of areas 
for growing particular species, driven by higher water 
temperature.

Fish mariculture in temperate regions, where much of the 
present-day production occurs (Halwart et al., 2007), is 
expected to be affected negatively by ocean warming. 
Salmon farming and the emerging culture of cod Gadus 
morhua need to operate within a relatively narrow range 
of temperatures for optimal performance. Temperatures 
>17 ºC would be detrimental to salmon and cod farming 
because feed intake drops and feed utilization efficacy is 
reduced above this threshold (Anon., 2008). 

Changes are also expected to occur in prime locations 
for farming tropical and sub-tropical marine finfish, such 
as groupers, snappers and cobia, as water temperatures 
increase. Where temperatures begin to exceed the 
thermal optima for these species, mariculture operations 
will need to move to higher latitudes.

The effects of a warmer ocean, manifested through 
changes in current patterns, and in salinity, run-off of 
nutrients and dispersal of pollutants resulting from 
higher rainfall, are also likely to reduce the productivity 
of other mariculture operations in tropical areas. For 

Figure 4.5.13 Intensive finfish cage culture in Xinqua Bay, Hainan Island, China. © Sena De Silva. 
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example, abrupt changes in salinity and alteration of 
coastal currents can be expected to affect recruitment 
of wild post-larvae collected for grow-out (World Bank, 
2000; Ahmed et al., 2013).

One of the main indirect effects of ocean warming on 
mariculture is expected to be more frequent disease 
outbreaks arising from redistribution of existing 
pathogens and increased virulence of previously 
dormant pathogens (Harvell et al., 1999; Mennerat, 
2010; Altizer et al., 2013; Leung and Bates, 2013; 
Chadag, 2014) (Table 4.5.6). The recent effects of early 
mortality syndrome on shrimp farming (FAO, 2013) 

provide another insight into the economic losses that 
can occur as a result of mariculture diseases. The 
incidence of ice–ice disease during farming of seaweed 
Kappaphycus alvarezii (‘cottonii’) and Eucheuma 
denticulatum (‘spinosum’) has also increased recently 
in north-east Sulawesi, Indonesia (Aslan et al., 2015). 
Factors that predispose seaweed to this disease include 
changes in temperature, salinity, light intensity, and 
colonization by bacteria, fungi and epiphytes (Largo et 
al., 1995a,b; Largo, 2002; Solis and Draeger, 2010). 

Another indirect threat to mariculture from warmer, more 
nutrient-rich, coastal waters is that the frequency of harmful 

Table 4.5.6 Aquatic diseases prevalent in tropical countries and their relationship with some of the key elements of climate change (source: Mohan, 2015) 

Disease Description and sensitivity to climate change

Infection with Aphanomyces 
invadans (Epizootic Ulcerative 
Syndrome-EUS)

Fish fungal disease. 
Seasonal disease of wild and farmed freshwater and estuarine fish; grows best 
at 20-30 C; salinity over 2 ppt can stop the spread, 97 species of fish confirmed 
to be susceptible; no data available on vectors; transmission horizontal; 
outbreaks normally associated with cooler months of the year and after rainfall.

Koi herpes virus disease (KHVD) Fish viral disease. 
Reported both in tropics and temperate regions; common carp and varieties 
of this species like koi are most susceptible; disease pattern influenced by 
temperature; occurring between 16 and 25oC.

Viral Encephalopathy and 
Retinopathy (VER)

Fish viral disease. 
Serious disease of mainly marine fishes; reported from more than 50 species; 
water most important abiotic vector; reported in both tropics and temperate 
regions; outbreaks related to water temperature.

White Spot Disease (WSD) Shrimp viral disease. 
Wide host range, especially decapod crustaceans, in marine, brackish and 
freshwater systems; horizontal and vertical transmission, outbreaks induced 
by rapid changes in salinity; temperature has profound influence on disease 
outbreaks with temperatures of 16-30oC conducive for outbreaks; stocking in 
cold season is one of the predisposing factors of WSD outbreaks.

Infectious Myonecrosis Shrimp viral disease. 
Temperature and salinity effects are considered to be predisposing factors to 
disease outbreaks

White tail disease Viral disease of freshwater prawn.
Penaeid shrimp and aquatic insects are vectors; rapid change in salinity, 
temperature and pH are predisposing factors to disease outbreak.

Shrimp AHPND Emerging bacterial disease of shrimp. 
Caused by pathogenic strain of Vibrio parahaemolyticus; reported from Asia 
and Latin America; nutrient loading and water quality as predisposing factors.

Fish ectoparasites like 
protozoans, flukes, crustaceans 
(Argulus, Lernaea)

Life cycle and larval development influenced by water temperature.

Streptococcus infection in fishes Diverse host range; higher temperatures (>30°C) predisposes fishes like tilapia 
to outbreaks of Streptococcus infection.
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algal blooms (HABs) could increase (Peperzak, 2003; 
Edwards et al., 2006; Al-Azri et al., 2015). HABs pose a 
threat to human health through consumption of filter-feeding 
molluscs, resulting in what is commonly called ‘shellfish 
poisoning’. The effects of HABs can also be expected to 
dislocate local benefits from mariculture, e.g. employment. 

Possible shortages in the supply of fish used to make 
the fish meal and fish oil ingredients in mariculture 
feeds (De Silva and Soto, 2009) is one potential indirect 
impact not expected to unduly disrupt the expansion 
of marine fish farming. Recent modelling suggests 
that technological developments should reduce the 
dependence of mariculture on fish meal (Merino et al., 
2012; Barange et al., 2014).

4.5.5 Global assessments for marine capture 
fisheries
Recent assessments of the future status of marine fish 
stocks include not only studies examining the projected 
effects of climate change but also those focusing on the 
possible effects of improvements in management. For 
example, Costello et al. (2016) examined more than 4,700 
fisheries worldwide, representing 78% of reported global 
fish catch, and concluded that: 1) the median fishery is in 
poor health; 2) only 32% of fisheries are in good biological 
condition; 3) applying sound management reforms could 
generate annual increases in global catch exceeding 16 
million tonnes; and 4) appropriate reforms could result 
in rapid recovery, with the median fishery taking less 
than 10 years to reach target levels. In short, common-
sense reforms to fishery management could improve 
overall fish abundance and increase food security and 
profits. However, as useful as such assessments are, 
the proposed improvements in management may be of 
limited value unless they also integrate the likely effects 
of climate change from global assessments, like those 
described below (Schindler and Hilborn, 2015). 

Global assessments of future fish production that include 
climate change as a driving factor, confirm the patterns 
from the five developing country regions – there will be 
winners and losers (Weatherdon et al., 2016). Thus, the 
scope for increased catches outlined by Costello et al. 
(2016) can be expected to vary among locations. As a 
general rule, global assessments project losses of fish 
species and decreased fisheries production in tropical 
areas and increases in higher latitude temperate areas 
(Allison et al., 2009; Cochrane et al., 2009; Cheung et 
al., 2011; Blanchard et al., 2012; Barange et al., 2014; 
Jones and Cheung, 2015). 

However, differences occur among assessments, 
depending on the modelling approach used, when 
projections are downscaled to regional or national levels, 
highlighting differing uncertainties among models. For 
example, Barange et al. (2014) project a different pattern 
of winners and losers among West African countries 
than those described in para. 4.5.3.4. Use of ensemble 
modelling approaches promises to help reduce such 
inconsistencies and quantify the uncertainties relating to 
projections of fisheries production due to climate change 
and, ultimately, help build confidence in using these 
projections for policy discussion (Jones et al., 2012; 
Jones and Cheung, 2015; Cheung et al., 2016b). For 
example, the Fisheries and Marine Ecosystem Model 
Intercomparison Project (FISH-MIP) seeks to collate 
global research efforts to compare global and regional 
projections of living marine resources and fisheries. 
It aims to standardize model inputs, where possible, 
and compare outputs from multiple models to assess 
climate and fisheries impacts on marine ecosystems 
and the services that they provide.

4.5.6 Implications for food security 
From the evidence summarized above, there is every 
reason to believe that ocean warming will reduce 
or redistribute the benefits of marine fisheries and 
mariculture in those regions of the world with a high 
dependence on fisheries for food security and livelihoods 
(Figure 4.5.14). 

All four dimensions of the contributions of marine 
fisheries and mariculture to food security will be affected 
(Cochrane et al., 2009). The availability of fish will vary 
as a result of changes in fish habitats, fish stocks and 
the distributions of species. The stability of supply will 
be altered by changes in seasonality, increased variance 
in ecosystem productivity and increased variability in 
catches. Access to fish will be affected by changes in 
opportunities to derive livelihoods from marine fisheries 
and mariculture, utilization of fish will be affected because 
some communities will need to adjust to species not 
consumed traditionally, and increased prevalence of 
aquatic diseases and HAB are likely to render some fish 
production inedible more frequently.

The effects on food security are likely to be greatest 
in tropical and subtropical countries where the largest 
reductions in fisheries production are generally expected 
to occur. However, as profound as the effects of ocean 
warming on productivity of marine fisheries are likely to 
be in many of these countries, population growth and 
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the quality of resource management will probably have 
a much greater influence on availability of fish per capita 
for the next few decades (Para. 4.5.3). This implies that 
governments must identify effective ways of minimizing 
and filling the gap between the amount of fish readily 
available and the quantities of fish required for good 
nutrition of national populations.

4.5.7 Recommended adaptations 
The main adaptations to reduce the gap in supply of fish 
for food security involve instituting better management 
of fish habitats and fish stocks (Figure 4.5.15), and 
improving supply chains. To fill the gap, governments 
will need to ensure that mariculture (and freshwater 
aquaculture) continue to develop in environmentally 

Figure 4.5.14 Fishers sorting their nets near Honiara, Solomon Islands. © Johann Bell.
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Figure 4.5.15 The importance of 
managing fish habitats and fish stocks 
well to minimize the gap between the fish 
required for good nutrition of populations 
and sustainable harvests of fish (source: 
Bell et al., 2011b).



Ocean  Warming428

4.  The significance of warming seas for ocean ‘goods and services’

sustainable ways (De Silva and Soto, 2009; De Silva, 
2012b; Hall et al., 2011; FAO, 2014a) and, where 
necessary, reallocate some of the fish normally traded 
(either as exports or through sale of licences to DWFNs) 
to domestic consumption. 

4.5.7.1 Adaptations to reduce the gap
Where they are currently weak, improvements in 
the following two broad categories of management 
will help to reduce the gap by optimizing fisheries 
production.

 1. Reducing the impact of local stressors on fish 
habitats. For example, restoring catchment 
vegetation to minimize the effects of run-off of 
sediments and nutrients on coral reefs, mangroves 

and seagrasses (Figure 4.5.16). The need for such 
integrated coastal management and marine spatial 
planning is widely recognized (Sale et al., 2014), 
and may extend to constructing artificial habitats to 
increase the capacity of coastal environments for 
fish recruitment. Integrated coastal management is 
now imperative to reduce the negative effects of 
coastal development on fisheries production and 
the incidence of HABs.

 2. Keeping production of fisheries within sustainable 
bounds using the most appropriate management 
measures for the national context and an 
ecosystem approach that integrates the effects 
of climate change (Heenan et al., 2015; Samoilys 
et al., 2015). For many developing countries, this 
will depend on primary fisheries management 

Figure 4.5.16 Differences in the quality of coastal fish habitats when catchments are managed well or managed poorly (source: Bell et al., 2011c).
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(Cochrane et al., 2011)3, which will need to 
become progressively more precautionary as the 
ocean continues to warm (Figure 4.5.17) and be 
well enforced (Samoilys et al., in press). Climate-
informed, primary fisheries management will 
involve raising awareness of the alterations in fish 
distribution and abundance due to ocean warming 
and diversifying fishing practices to take catches 
representative of the changes in relative abundance 
of species (Cheung et al., 2013b). For coral reef 
fisheries, herbivorous fish species are expected to 
comprise a higher proportion of the catch in the 
future (Pratchett et al., 2011). However, harvesting 
of herbivorous fish will need to be restrained to 
ensure they remain plentiful enough to help remove 
the algae that inhibit the survival and growth of 
corals (Bellwood et al., 2004).

Improvements to supply chains, from beginning to end, 
can also help fill the gap by making fishing more efficient 
and reducing waste. Environmental forecasting of the 
best times to fish (and the onset of extreme events) via 
mobile phone networks can reduce travel/search times 

 3 Primary fisheries management recognizes the need to use simple harvest 
controls, such as size limits, closed seasons and areas, gear restrictions and 
protection of spawning aggregations. In many cases it can be applied most 
effectively through community-based approaches (Govan et al., 2008; SPC, 
2010; Rocliffe et al., 2014). Secondary and tertiary fisheries management 
require greater investments in stock assessments to reduce uncertainty 
about the economic benefits that can be gained from more accurate and 
precise estimates of sustainable harvests.

for small-scale fishers and enhance diversification of 
livelihoods into farming activities when fish are harder 
to catch. Mobile phones can also be used to assess 
market conditions to optimize income and arrange the 
timing of transport to markets. Improving fish handling, 
by providing better access to ice, for example, will 
increase the time that catches remain fit for human 
consumption.

4.5.7.2 Adaptations to fill the gap
Increasing environmentally sustainable mariculture (and 
freshwater aquaculture) is one of the most important 
adaptations to the effects of ocean warming on the 
availability of fish for food security. The following steps 
will be particularly important:

• improving national capacity by providing the 
necessary technical knowledge, extension services 
and incentives to scale-up the production of 
juvenile fish for grow-out and increase the number 
of fish farms;

• continuing the research needed to develop suitable 
feeds for marine finfish with minimal fish meal and 
fish oil content, including exploration of the best 
ways to incorporate fish processing waste into 
feeds;

• commencing more genetic improvement 
programmes to build the resilience of domesticated 
species to higher SST and pathogens expected to 
be favoured by ocean warming;

Figure 4.5.17 General relationship between potential benefits from fisheries (green line), and uncertainty in information for management (blue line), as 
functions of costs, for primary, secondary and tertiary fisheries management (source: Cochrane et al., 2011 and Bell et al., 2011c). The reduction in benefits 
under primary fisheries management as a result of the increased uncertainty caused by ocean warming and other features of climate change (CC) is 
indicated by the orange shading.
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• exploring the scope for domestication of additional 
marine fish species (preferably omnivores) with 
promising attributes for hatchery rearing, tolerance 
of higher temperatures and rapid growth in culture 
systems;

• promoting the capture and culture of wild-caught 
post-larvae of species that have high post-
settlement mortality but good survival in culture (Hair 
et al., 2002), provided such harvests do not have 
adverse effects on recruitment to capture fisheries;

• encouraging stock enhancement of coastal 
species where it has been demonstrated that 
release of culture juveniles adds value to other 
forms of management (Bell et al., 2005b; Lorenzen 
et al., 2010); and

• growing-out bycatch species, as done in India (pers. 
comm. S. Shyam, CMFRI), in ways that address 
risks of overfishing as a result of this practice.

 
Despite the great need to increase aquaculture 
production (Merino et al., 2012), for several developing 
countries the most practical ways of filling the gap in 
fish supply will be increasing access to large and small 
pelagic fish presently caught mainly by industrial fleets. 
Options available to governments include:

• Assisting small-scale coastal fishers to transfer 
some of their fishing effort to pelagic fish by 
equipping them to fish safely and effectively further 
from shore and expanding the use of nearshore 
fish aggregating devices (Bell et al., 2015b) (Figure 
4.5.18). Such investments not only increase access 
to fish now, they will help communities adapt to 
the negative effects of ocean warming on the 

productivity of fisheries associated with coral reefs 
(Bell et al., 2013). Even where tuna are projected 
to decline within EEZs as the ocean warms (Para. 
4.5.2), tuna are still expected to be abundant 
enough to make these adaptations effective.

• Implementing policies that: 1) ensure that industrial 
fishing operations do not have negative effects on 
small-scale fishers, 2) require industrial fleets to land 
bycatch, and target species if necessary, at major 
ports to provide urban communities with low-cost 
fish, and 3) facilitate the development of small and 
medium enterprises to distribute fish to urban and 
peri-urban areas (Bell et al., 2015a). In many cases, 
the fish to be retained for local food security can be 
offloaded during routine transhipping operations 
and may only be a small proportion of the total 
industrial catch. For example, only 3% of the tuna 
catch in Papua New Guinea would be needed for 
coastal and urban communities to have access 
to the recommended quantities of fish for good 
nutrition by 2020 (Table 4.5.1). Although reallocation 
of a small percentage of the recommended 
tuna from the waters of PNG for direct domestic 
consumption is likely to result in a small economic 
loss, the benefits to public health are expected to 
be substantial (Golden et al., 2016). Quantifying 
this trade-off will assist governments to implement 
the best food security policies for adapting to the 
effects of ocean warming on fisheries resources.
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Figure 4.5.18 Nearshore fish 
aggregating devices allow 
some coastal fishing effort 
to be transferred to pelagic 
(oceanic) fisheries resources 
(source: SPC, 2014). (However, 
managers should ensure that 
no net increase in the overall 
catch of oceanic fisheries 
resources occurs by reducing 
industrial catches to cater 
for the needs of small-scale 
fishers).
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