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This work clarifies the relationship between network circuit (topology) and behavior (information
transmission and synchronization) in active networks, e.g. neural networks. As an application,
we show how to determine a network topology that is optimal for information transmission.
By optimal, we mean that the network is able to transmit a large amount of information, it
possesses a large number of communication channels, and it is robust under large variations of
the network coupling configuration. This theoretical approach is general and does not depend
on the particular dynamic of the elements forming the network, since the network topology can
be determined by finding a Laplacian matrix (the matrix that describes the connections and the
coupling strengths among the elements) whose eigenvalues satisfy some special conditions. To
illustrate our ideas and theoretical approaches, we use neural networks of electrically connected
chaotic Hindmarsh–Rose neurons.
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1. Introduction

The relation between neural circuits and behavior
is of fundamental importance in neuroscience.
In this work, we present a theoretical approach
that has the potential to unravel such a relation-
ship in terms of network topology, information

and synchronization in active networks, networks
formed by elements that are dynamical systems
(such as neurons, chaotic or periodic oscillators). As
a direct application to our approach, we show how
one can construct optimal neural networks that not
only transmit large amounts of information from
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one element to another in the network, but are
also robust under alterations in the coupling con-
figuration. We also argue that the relation between
synchronization and information is rather subtle.
Neural networks, whose configurations allow the
transmission of large amounts of information, might
have at least two unstable modes of oscillation that
are out of synchrony, while all the others are syn-
chronous. Depending on the kind of measurement
being done, one can arrive at contradicting state-
ments concerning the relation between information
and synchronization. We illustrate our theoretical
approach by using neural networks of electrically
connected chaotic Hindmarsh–Rose neurons [Hind-
marsh & Rose, 1984]. Our results have a tremen-
dous impact on the understanding of information
transmission in brain-like networks, in particular,
in the mammalian brain. They also shed light on
the rules under which neurons encode and transmit
information after external stimuli.

Given an arbitrary time dependent stimulus
that externally excites an active network formed
by systems that have some intrinsic dynamics (e.g.
neurons and oscillators), how much information
from such stimulus can be realized by measuring
the time evolution of one of the elements of the net-
work? Determining how and how much information
flows along anatomical brain paths is an important
requirement for the understanding of how ani-
mals perceive their environment, learn and behave
[Smith et al., 2006; Eggermont, 1998; Borst & The-
unissen, 1999].

The works of [Eggermont, 1998; Borst & The-
unissen, 1999; Strong et al., 1998; Smith et al., 2006;
Palus et al., 2001; Żochowski & Dzakpasu, 2004]
propose ways to quantify how and how much infor-
mation from a stimulus is transmitted in neural
networks. In particular, [Strong et al., 1998] demon-
strated that 50% of the information about light
displacements might be lost after being processed
by the H1 neuron, sensitive to image motion around
a vertical axis, a neuron localized in a small neu-
ral network of the Chrysomya magacephala fly, the
lobula plate. Does that mean that the H1 neuron
has an information capacity lower than the informa-
tion contained in the light stimulus? Or does that
mean that information is lost due to the presence
of internal noise? These questions and others, which
are still awaiting answers, concern the rules under
which information is coded and then transmitted
by neurons and it is a major topic of research in

neuroscience referred to as the neural code [Egger-
mont, 1998; Borst & Theunissen, 1999].

Even though the approaches of [Eggermont,
1998; Borst & Theunissen, 1999; Strong et al., 1998;
Smith et al., 2006; Palus et al., 2001; Żochowski &
Dzakpasu, 2004] have brought considerable under-
standing on how and how much information from
a stimulus is transmitted in a neural network, the
relation between network circuits (topology) and
information transmission in a neural as well as an
active network is still awaiting a more quantita-
tive description [Jirsa, 2004]. And that is the main
thrust of the present manuscript, namely, to present
a quantitative way to relate network topology with
information in active networks. Since information
might not always be easy to be measured or quan-
tified in experiments, we endevour to clarify the
relation between information and synchronization,
a phenomenom which is often not only possible to
observe but also relatively easy to characterize.

We initially proceed along the same line as in
[Schreiber, 2000; San Liang & Kleeman, 2005], and
study the information transfer in autonomous sys-
tems. However, instead of treating the information
transfer between dynamical systems components,
we treat the transfer of information per unit time
exchanged between two elements in an autonomous
chaotic active network. Thus, we neglect the com-
plex relation between external stimulus, and the
network and show how to calculate an upper
bound value for the mutual information rate (MIR)
exchanged between two elements (a communication
channel) in an autonomous network. Ultimately, we
discuss how to extend this formula to nonchaotic
networks suffering the influence of a time-dependent
stimulus.

Most of this work is directed to ensure the plau-
sibility and validity of the proposed formula for
the upper bound of MIR (Sec. 2.1) and also to
study its applications in order to clarify the relation
among network topology, information, and synchro-
nization. We do not rely only on results provided by
this formula, but we also calculate the MIR by the
methods in [Baptista & Kürths, 2005, 2008] and by
symbolic encoding of the trajectory of the elements
forming the network and then measuring the mutual
information provided by this discrete sequence of
symbols (method described in Sec. 4.1).

This work follows the same lines as in [Bap-
tista et al., 2008a], extending it to more general
networks. And for that reason, we review some of its
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contents and results. However, we enlarge that work
by studying the transfer of information in other net-
works in which the neurons are connected in a ring
topology, and also to more arbitrary networks which
reproduce a desired set of eigenvalues for the con-
necting matrix. These eigenvalues are calculated in
order to maximize either the amount of information
transferred or the level of synchronization among
the neurons in the network. We also validate the
proposed formula for the upper bound of MIR for
when the level of desynchronization in the network
is much higher than the level of synchronization.
The proposed formula indicates that in such a situ-
ation neurons still exchange a large amount of infor-
mation among themselves. As we show herein for
two coupled chaotic maps, that indeed seems to be
the case. Finally, in this work, we make a complete
and detailed analysis of the relationship between the
synchronous behavior and the rate at which neurons
exchange information.

To illustrate the power of the proposed formula,
we applied it to study the exchange of informa-
tion in networks of coupled chaotic maps (Sec. 4.4)
and in Hindmarsh–Rose neural networks bidirec-
tionally electrically coupled (Sec. 2.2). The analyses
are carried out using quantities that we believe to be
relevant to the treatment of information transmis-
sion in active networks: a communication channel,
the channel capacity, and the network capacity (see
definitions in Sec. 4.3).

A communication channel represents a path-
way through which information is exchanged. In
this work, a communication channel is considered
to be formed by a pair of elements. One element
represents a transmiter and the other a receiver,
where the information about the transmiter can be
measured.

The channel capacity is defined in terms of the
proposed upper bound for the MIR. It measures
the local maximal rate of information that two ele-
ments in a given network are able to exchange, a
point-to-point measure of information exchange. As
we shall see, there are two network configurations
for which the value of the upper bound can be con-
sidered to be maximal with respect to the coupling
strength.

The network capacity is the maximum of the
KS-entropy, for many possible network configura-
tions with a given number of elements. It gives
the amount of independent information that can
be simultaneously transmitted within the whole

network, and naturally bounds the value of the MIR
in the channels, which concerns only the transmis-
sion of information between two elements.

While the channel capacity is bounded and does
not depend on the number of elements forming
the network, the network capacity depends on the
number of elements forming the network.

As a direct application of the formula for the
upper bound value of the MIR, we show that an
active network can operate with a large amount
of MIR and KS-entropy and at the same time it
is robustly resistant to alterations in the coupling
strengths, if the eigenvalues of the Laplacian matrix
satisfy some specified conditions (Sec. 2.3). The
Laplacian matrix describes the connections among
the elements of the network.

The conditions on the eigenvalues depend on
whether the network is constructed in order to
possess communication channels that are either
self-excitable or non-self-excitable (see definition in
Sec. 4.2). Active networks that possess non-self-
excitable channels (formed by oscillators as the
Rössler, or the Chua’s circuit) have channels that
achieve their capacity whenever their elements are
in complete synchrony. Therefore, if a large amount
of information is desired to be transmitted point-
to-point in a non-self-excitable network, easily syn-
chronizable networks are required. On the other
hand, networks that possess self-excitable channels
(as the ones formed by neurons), achieve simultane-
ously its channel and network capacities when there
is at least one unstable mode of oscillation (time-
scale) that is out of synchrony (see Sec. 4.5).

While non-self-excitable channels permit the
exchanging of a moderate amount of information
in a reliable fashion, due to the low level of desyn-
chronization in the channel, self-excitable channels
permit the exchange of surprisingly large amounts
of information, not necessary reliable, due to the
higher level of desynchronization in the channel.

In aiming to find optimal network topologies,
networks that can not only transmit large amounts
of information but are also robust under alterations
in the coupling strengths, we arrive at two rele-
vant eigenvalues conditions which provide networks
that satisfy all the optimal requirements. Either
the network has elements that remain completely
desynchronous for large variations of the coupling
strength, forming the self-excitable channels, or
the network has elements almost completely syn-
chronous, forming the non-self-excitable channels.
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In fact, the studied network, a network formed
by electrically connected Hindmarsh–Rose neurons,
can have simultaneously self-excitable and non-self-
excitable channels.

Self-excitable networks, namely those that have
a majority number of self-excitable channels, have
the topology of a perturbed star, i.e. they are
composed of a central neuron connected to most of
the other outer neurons, and some outer neurons
sparsely connected among themselves. The net-
works that have non-self-excitable channels have the
topology of a perturbed fully connected network,
i.e. a network whose elements are almost all-to-all
connected. The self-excitable network has thus a
topology which can be considered to be a model for
mini-columnar structure of the mammalian neocor-
tex [der Malsburg, 1985].

In order to construct optimal networks, we
have used two approaches. Firstly, in Sec. 2.4.1, we
use a Monte Carlo evolution technique [Ipsen &
Mikhailov, 2002] to find the topology of the
network, assuming equal bidirectional coupling
strengths. This technique simulates the rewiring of a
neuron network that maximizes or minimizes some
cost function, in this case a cost function which
produces optimal networks to transmit information.
In the second approach (Sec. 2.4.2), we allow the
elements to be connected with different coupling
strengths. We then use the Spectral Theorem to cal-
culate the coupling strengths of an all-to-all topol-
ogy network.

Finally, we discuss how to extend these results
to networks formed by elements that are nonchaotic
(Sec. 2.5), and to nonautonomous networks, that
are being perturbed by some time-dependent stim-
uli (Secs. 2.5 and 2.6).

2. Results

2.1. Upper bound for the mutual
information rate (MIR) in an
active network

In a recent publication [Baptista & Kürths, 2005],
we have argued that the mutual information rate
(MIR) between two elements in an active chaotic
network, namely, the amount of information per
unit time that can be realized in one element, k,
by measuring another element, l, regarded as IC , is
given by the sum of the conditional Lyapunov expo-
nents associated with the synchronization mani-
fold (regarded as λ‖) minus the positive conditional

Lyapunov exponents associated with the transver-
sal manifold (regarded as λ⊥). So, IC = λ‖ − λ⊥.

As shown in [Baptista & Kürths, 2008], if one
has N = 2 coupled chaotic systems, which pro-
duce at most two positive Lyapunov exponents
λ1, λ2 with λ1 > λ2, then λ‖ = λ1 and λ⊥ = λ2.
Denote the trajectory of the element k in the
network by xk. For larger number of elements, N ,
the approaches proposed in [Baptista & Kürths,
2005] remain valid whenever the coordinate trans-
formation Xkl‖ = xk + xl (which defines the
synchronization manifold) and Xkl⊥ = xk − xl

(which defines the transversal manifold) success-
fully separate the two systems k and l from the
whole network. Such a situation arises in networks
of chaotic maps of the interval connected by a
diffusively (also known as electrically or linear)
all-to-all topology, where every element is connected
to all the other elements. These approaches were
also shown to be approximately valid for chaotic
networks of oscillators connected by a diffusively
all-to-all topology. The purpose of the present work
is to extend these approaches and ideas to active
networks with arbitrary topologies.

Consider an active network formed by N
equal elements, xi (i = 1, . . . , N), where every
D-dimensional element has a different set of initial
conditions, i.e. x1 �= x2 �= · · · �= xN . The network is
described by

ẋi = F(xi) − σ
∑

j

GijH(xj), (1)

where Gij is the ij element of the coupling matrix.
Since we choose

∑
j Gij = 0 in order for a synchro-

nization manifold to exist by the subspace η = x1 =
x2 = x3 = · · · = xN , we can call this matrix the
Laplacian matrix. The synchronous solution, η, is
described by

η̇ = F (η). (2)

The way small perturbations propagate in the
network [Heagy et al., 1994] is described by the
i (i = 1, . . . , N) variational equations of Eq. (1),
namely writing xi = η + δxi and expanding Eq. (1)
in δxi,

δẋi =


∇F(xi) − σ

N∑
j=1

GijDH(xi)


 δxi (3)

obtained by linearly expanding Eq. (1). The spectra
of Lyapunov exponent is obtained from Eq. (3).
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Making xi = ξ, which can be easily numerically
done by setting the elements with equal initial con-
ditions and taking H(xi) = xi, Eq. (3) can be made
block diagonal resulting in

ξ̇i = [∇F(xi) − σγi]ξi. (4)

where γi are the eigenvalues (positive defined) of
the Laplacian matrix ordered such that γi+1 ≥ γi.
Note that γ1 = 0.

Notice that the network dynamics is described
by Eq. (1), which assumes that every element has
different initial conditions and therefore different
trajectories (except when the elements are com-
pletely synchronized). On the other hand, Eq. (4)
that provides the conditional exponents considers
that all the initial conditions are equal. The equa-
tions for ξ1 describe the propagation of perturba-
tions on the synchronization manifold ξ, and the
other equations describe propagation of perturba-
tions on the manifolds transversal to the synchro-
nization manifold. While Eq. (3) provides the set of
Lyapunov exponents of an attractor, Eq. (4) pro-
vides the Lyapunov exponents of the synchroniza-
tion manifold and its transversal directions.

Notice also that when dealing with linear
dynamics, the Lyapunov exponents [obtained from
Eq. (3)] are equal to the conditional exponents
[obtained from Eq. (4)] independent of the initial
conditions.

An upper bound for the MIR in the com-
munication channel ci−1: The following formula
provides an upper bound for the rate of information
exchanged between the oscillation modes ξi and ξ1.
In some cases as discussed further, an estimation is
provided for the information rate at which an ele-
ment xk exchanges with another element xl in the
network. This upper bound is given by

Ii−1
P ≤ |λ1 − λi| (5)

with i ∈ (2, . . . , N), and λi representing the sum of
all the positive Lyapunov exponents of the equa-
tion for the mode ξi, in Eq. (4). So, λ1 is the sum
of positive conditional exponents obtained from the
separated variational equations, using the smallest
eigenvalue associated with the exponential diver-
gence between nearby trajectories around ξ, the
synchronous state, and λi (i > 1) are the sum of the
positive conditional exponents of one of the possible
desynchronous oscillation modes. Each eigenvalue
γi produces a set of conditional exponents λi

m, with
m = 1, . . . ,D.

Each oscillatory mode ξi represents a subnet-
work within the whole network which possesses
some oscillatory pattern. This oscillatory subnet-
work can be used for communications purposes.
Each mode represents a path along which infor-
mation can be transmitted through the network.
The oscillation mode associated with the syn-
chronization manifold (ξ1) propagates some infor-
mation signal everywhere within the network.
The desynchronous modes limits the amount of
information that one can measure from the sig-
nal propagated by the synchronous mode. Although
Eq. (5) gives the upper bound for the amount of
information between modes of oscillation, for some
simple network geometries, as the ones studied here,
we can relate the amount of information exchanged
between two vibrational modes to the amount of
information between two elements of the network,
and therefore, Eq. (5) can be used to calculate an
upper bound for the MIR exchanged between pairs
of elements in the network. For larger and complex
networks, this association is nontrivial, and we rely
on the reasonable argument that a pair of elements
in an active network cannot transmit more informa-
tion than some of the i − 1 values of Ii−1

P .
The inequality in Eq. (5) can be interpreted

in the following way. The right-hand side of Eq. (5)
calculates the amount of information that one could
transmit if the whole network were completely syn-
chronous with the state ξ, which is only true when
complete synchronization takes place. Typically, we
expect that the elements of the network will not
be completely synchronous to ξ. While the positive
conditional exponents associated with the synchro-
nization manifold provide an upper bound for the
rate of information to be transmitted, the transver-
sal conditional exponents provide a lower bound
for the rate of erroneous information exchanged
between nodes of the network. Thus, the amount
of information provided by the right part of Eq. (5)
overestimates the exact MIR which, due to desyn-
chronization in the network, should be smaller than
the calculated one. For more details on the deriva-
tions of Eq. (5), see Sec. 4.4.

Equation (6) allows one to calculate the MIR
between oscillation modes of larger networks with
arbitrary topology rescaling the MIR curve (I1

P ver-
sus σ) obtained from two coupled elements. Denot-
ing σ∗(N = 2) as the strength value for which the
curve for λ2 reaches a relevant value, say, its max-
imum value, then the coupling strength for which
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this same maximum is reached for λi in a network
composed by N elements is given by

σi∗(N) =
2σ∗(N = 2)

γi(N)
(6)

where γi(N) represents the ith largest eigenvalue
of the N -elements network. If the network has an
all-to-all topology, thus, σ∗(N = 2) represents the
strength value for which the curve of I1

P reaches a
relevant value, and σ∗(N) the strength value that
this same value for Ii

P is reached.
Notice that symmetries in the connecting net-

work topology leads to the presence of degenerate
eigenvalues (= equal eigenvalues) in the Laplacian
matrix, which means that there are less indepen-
dent channels of communication along which infor-
mation flows. Calling Q the number of degenerate
eigenvalues of the Laplacian matrix, Eq. (5) will
provide N − Q different values.

As the coupling strength σ is varied, the quan-
tities that measure information change correspond-
ingly. For practical reasons, it is important that
we can link the way these quantities (see Sec. 4.3)
change with the way the different types of syn-
chronization that show up in the network (see
Sec. 4.5). In short, there are three main types of
synchronization observed in our examples: burst
phase synchronization (BPS), when at least one pair
of neurons are synchronous in the slow time-scale
but desynchronous in the fast time-scale, phase
synchronization (PS), when all pairs of neurons
are phase synchronous, and complete synchroniza-
tion (CS), when all pairs of neurons are completely
synchronous. The coupling strength for which these
synchronous phenomena appear are denoted by
σBPS, σPS, and σCS (with no superscript index).

Finally, there are a few more relevant coupling
strengths, which characterize each communication
channel. First, σi

min, for which the sum of the ith
conditional exponents λi equals the value of λ1.
For σ < σi

min, the communication channel i (whose
upper rate of information transmission depends on
the two oscillation modes ξ1 and ξi) behaves in a self-
excitable way, i.e. λ1 < λi. For σ ≥ σi

min, λ1 ≥ λi.
Secondly, σi∗ indicates the coupling strength at
which Ii−1

P is maximal. Thirdly, σi
CS indicates the

coupling strength for which the communication
channel ci−1 becomes “stable”, i.e.λi < 0.Atσ = σi∗
the self-excitable channel capacity of the channel
ci−1 is reached and at σ = σi

CS, the non-self-excitable
channel capacity is reached. Finally, σC is the

coupling for which the network capacity is reached,
and then, when the KS-entropy of the network is
maximal. For other quantities, see Sec. 4.3.

2.2. The MIR in networks of coupled
Hindmarsh–Rose neurons

We investigate how information is transmit-
ted in self-excitable networks composed of N
bidirectionally coupled Hindmarsh–Rose neurons
[Hindmarsh & Rose, 1984]:

ẋi = yi + 3x2
i − x3

i − zi + Ii + σ
∑

j

Gij(xj)

ẏi = 1 − 5x2
i − yi

żi = −rzi + 4r(xi + 1.6)

(7)

The parameter r modulates the slow dynamics and
is set equal to 0.005, such that each neuron is
chaotic. The index i �= j assumes values within the
set [1, . . . , N ]. Sk represents the subsystem formed
by the variables (xk, yk, zk) and Sl represents the
subsystem formed by the variables (xl, yl, zl), where
k = [1, . . . , N−1] and l = [k+1, . . . , N ]. The Lapla-
cian matrix is symmetric, so Gji = Gij, and σGji is
the strength of the electrical coupling between the
neurons, and we take for Ii the value Ii = 3.25.

In order to simulate the neuron network and to
calculate the Lyapunov exponents through Eq. (3),
we use the initial conditions x = −1.3078 + η, y =
−7.3218 + η, and z = 3.3530 + η, where η is an
uniform random number within [0,0.02]. To calcu-
late the conditional Lyapunov exponents, we use the
equal initial conditions, x = −1.3078, y = −7.3218,
and z = 3.3530.

All-to-all coupling: Here, we analyze the case
where N neurons are fully connected to every other
neuron. The Laplacian matrix has N eigenvalues,
γ1 = 0, and N − 1 degenerate ones γi = N, i =
2, . . . , N . Every pair of neurons exchange an equal
amount of MIR. Although, there are N × (N −1)/2
pairs of neurons, there is actually only one inde-
pendent channel of communication, i.e. a pertur-
bation applied at some point of the network should
be equally propagated to all other points in the net-
work. In Fig. 1(a), we show the MIR, IC , calculated
using the approaches in [Baptista & Kürths, 2005,
2008], IP , calculated using the right-hand side of
Eq. (5), and IS, calculated encoding the trajec-
tory between pair of neurons (Sec. 4.1), and the
Kolmogorov–Sinai entropy, HKS, for a network com-
posed of N = 2 neurons. In Fig. 1(b), we show these
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Fig. 1. The quantities IC (black circles), IP (red squares),
IS (green diamonds), and HKS (blue diamonds), for (a) two
and (b) four coupled neurons, in an all-to-all topology. Notice
that since there are only two different eigenvalues, there is
only one channel of communication whose upper bound for
the MIR is given by IP = |λ1−λ2|. Also, IS and IC represent
the mutual information exchanged between any two pairs of
elements in the system. (a) σ2∗ = 0.092, σBPS

∼= 0.2, σ2
min =

0.42, σPS = 0.47, and σCS = 0.5. (b) σ2∗ = 0.046, σBPS
∼=

0.1, σ2
min = 0.21, σPS = 0.24, and σCS = 0.25. CS indicates

the coupling interval σ ≥ σCS for which there exists complete
synchronization.

same quantities for a network formed by N = 4
neurons.

While for σ ∼= 0 and σ ≥ σCS, we have that
IC

∼= IP
∼= IS , for σ ∼= σ2∗ (when the self-excitable

channel capacity is reached) it is clear that IP

should be an upper bound for the MIR, since not
only IP > IC but also IP > IS . Notice the good
agreement between IC and IS , except for σ ∼= σ2

min,
when IS > HKS, which violates Eq. (13).

The star symbol indicates the value of the cou-
pling, σBPS (Sec. 4.5), for which burst phase syn-
chronization (BPS) appears while the spikes are
highly desynchronous. The appearance of BPS coin-
cides with the moment where all the quantifiers for
the MIR are large, and close to a coupling strength,

σC , for which the network capacity is reached (when
HKS is maximal).

At this point, the network is sufficiently desyn-
chronous to generate a large amount of entropy,
which implies a large λi, for i ≥ 2. This is an
optimal configuration for the maximization of the
MIR. There exists phase synchrony in the subspace
of the slow time-scale z variables (which is respon-
sible for the bursting-spiking behavior), but there is
no synchrony in the (x, y) subspace. This supports
the binding hypothesis, a fundamental concept of
neurobiology [der Malsburg, 1985] which sustains
that neural networks coding the same feature or
object are functionally bounded. It also simultane-
ously supports the works of [Pareti & Palma, 2004],
which show that desynchronization seems to play
an important role in the perception of objects as
well. Whenever λ2 approaches zero, at σ = σCS,
there is a drastic reduction in the value of HKS as
well as IP , since the network is in complete synchro-
nization (CS), when all the variables of one neuron
equals the variables of the other neurons.

Therefore, for coupling strengths larger than
the one indicated by the star symbol, and smaller
than the one where CS takes place, there is still
one time-scale, the fast time-scale, which is out of
synchrony.

For σ > σ2
min, the only independent commu-

nication channel is of the non-self-excitable type.
That means λi ≤ λ1 (i ≥ 2), and as the coupling
strength increases, HKS decreases and IP increases.

Note that the curve for IP shown in Fig. 1(b)
can be obtained by rescaling the curve shown in
Fig. 1(a), applying Eq. (6).

Nearest-neighbor coupling: In this configura-
tion, every neuron is connected to its nearest neigh-
bors, with periodic boundary conditions, forming a
closed ring. The eigenvalues of the Laplacian matrix
can be calculated from γk = 4 sin (π(k−1)

N )
2
, k ∈

[1, . . . , N ]. Notice that in this example, γk+1 might
be smaller than γk due to the degeneracies. We orga-
nize the eigenvalues in an increscent order. For our
further examples, we consider N = 4 [in Fig. 2(a)]
and N = 6 [in Fig. 2(b)]. For N = 4, γ1 = 0, γ2,3 =
2, γ4 = 4, and for N = 6, γ1 = 0, γ2,3 = 1, γ4,5 =
3, γ6 = 4.

Networks with a nearest-neighbor coupling
topology and an even number of elements possess
a connecting matrix G with N/2 − 1 degenerate
eigenvalues, and therefore, N − N/2 + 1 distinct
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Fig. 2. The quantities IP and HKS for nearest-neighbor
networks with (a) N = 4 and (b) N = 6. (a) σ2∗ = 0.09,
σ4∗ = 0.046, σ2

min = 0.42, σ4
min = 0.21, σ4

CS = 0.25, σBPS
∼=

0.18, σPS = 0.462, and σCS = 0.5. (b) σ2∗ = 0.18,
σ6∗ = 0.061, σ2

min = 0.84, σ6
min = 0.27, σ6

CS = 0.33, σBPS
∼=

0.23, σPS = 0.78, and σCS = 1.0. The stars point to where
BPS first appears. CS indicates the coupling interval σ ≥ σCS

for which there exists complete synchronization.

eigenvalues. There are only N −N/2 different mini-
mal path lengths connecting the elements of the net-
work. The minimal path length quantifies the mini-
mal distance between an element and another in the
network by following a path formed by connected
elements. Note that IP assumes only N − N/2 dif-
ferent values. It is reasonable to state that each dif-
ferent value corresponds to the exchange of informa-
tion between elements that have the same minimal
path length.

For a network with N = 4 [Fig. 2(a)], there are
two possible minimal path lengths, 1 and 2. Either
the elements are 1 connection apart, or 2 connec-
tions apart. For such a network, it is reasonable
to associate I1

P = λ1 − λ2 with the MIR between
two elements, Sk and Sk+2, that are 2 connections
apart, and I3

P = |λ1 − λ4| to the MIR between two
elements, Sk and Sk+1, that are 1 connection apart.

The more distant (closer) an element is from any
other, the larger (smaller) is the coupling strength
for them to synchronize. In addition, σ2∗ > σ4∗
and σ2

min > σ4
min. That means that the more dis-

tant elements are from each other the larger is
the coupling strength, in order for these two ele-
ments to exchange a large rate of information, since
σ2∗ > σ4∗. In addition, since σ2

min > σ4
min, the com-

munication channel responsible for the exchange of
information between closer elements (the channel
c3) becomes non-self-excitable for a smaller value
of the coupling strength than the strength neces-
sary to turn the communication channel responsi-
ble for the exchange of information between distant
elements (the channel c1) into a non-self-excitable
channel. Since the level of desynchronization in a
non-self-excitable channel is low, then, closer ele-
ments can exchange reliable information for smaller
coupling strengths than the strength necessary for
distant elements to exchange reliable information.
Note that due to the one degenerate eigenvalue,
I1
P = I2

P , σ2∗ = σ3∗, and σ2
min = σ3

min. A similar
analysis can be done for the network N = 6, whose
results are shown in Fig. 2(b).

The KS entropy of the network, HKS, is also
shown in this figure. In (a), σ2

min = 0.42 and σ4
min =

0.21, and in (b), σ2
min = 0.84 and σ6

min = 0.275, val-
ues that can be easily derived from Eq. (6). Note
that the values of σ = σ4

min in (a) [and σ = σ6
min,

in (b)] are close to the parameter for which BPS in
the slow time-scale is first observed in these net-
works (indicated by the star symbol in Fig. 2),
σBPS

∼= 0.18 [in (a)] and σBPS
∼= 0.23 [in (b)]. At

σ ∼= σ4
min [in (a)] and σ ∼= σ6

min [in (b)], also the
quantities I1

P and HKS are large.
Another important point to be emphasized

in these networks is that ∆σi
NSE = σCS −

σi
min, regarded as the non-self-excitable robustness

parameter for the communication channels ci, with
i = 3 for the network with N = 4 [in (a)] and
i = 5 for the network with N = 6 [in (b)] is large.
This is a consequence of the fact that the normal-
ized spectral distance (NED), (γi − γ2)/N is also
large, for either i = 4 [in (a)] or i = 6 [in (b)].
Having a large NED between the ith largest and
the first largest eigenvalues results in a non-self-
excitable channel, ci−1, robust under large alter-
ations of the coupling strength. On the other hand,
∆σi

SE = σi
min, regarded as the self-excitable robust-

ness parameter for the communication channel ci−1,
is large, for i = 2, 3. This is a consequence of the
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fact that the normalized spectral distance (NED),
(γN − γi)/N is large. Having a large NED between
the largest and the ith largest eigenvalues results
in a self-excitable channel, ci−1, robust under large
alterations of the coupling strength.

Notice also that the maximal values of IP for
all-to-all and nearest-neighbor network topologies
are the same (see Figs. 1 and 2). This shows that
the maximum of IP does not depend on the number,
N , of elements in the network. Not so in the case
of the network capacity CC , which increases with
N . Thus, pairs of elements can transmit informa-
tion in a rather limited rate, but depending on the
number of elements forming the network, a large
number of channels can simultaneously transmit
information.

Star coupling: We consider N = 4. There is a
central neuron, denoted by S1, bidirectionally con-
nected to the other three (Sk, k = 2, 3, 4), but
none of the others are connected among themselves.
The eigenvalues of the Laplacian matrix are γ1 =
0, γ2,3 = 1, γ4 = N . So, not only the NED between
γN and γN−1 is large but also between γN and γN−2,
and therefore, ∆σN−1

SE and ∆σN−2
SE are large. This

provides a network whose channels c1 and c2 have a
large MIR for a large coupling strength alteration.
Note that if γN−1 is far away from γN that implies
that γN−2 is also far away from γN . Thus, a rea-
sonable spectral distance between γN−1 and γN is a
“biological requirement” for the proper function of
the network, since even for larger coupling strengths
there will be at least one oscillation mode which is
desynchronous, a configuration that enables pertur-
bation (meaning external stimuli) to be propagated
within the network.1

The largest eigenvalue is related to an oscilla-
tion mode where all the outer neurons are in syn-
chrony with each other but desynchronous with the
central neuron. So, here it is clear the association
between |λ1 −λ4| and the MIR between the central
neuron with an outer neuron, since λ1 represents the
amount of information of the synchronous trajecto-
ries among all the neurons, while λ4 is the amount
of information of the desynchronous trajectories
between the central neuron and any outer neuron.
The other eigenvalues (γ2, γ3) represent directions
transverse to the synchronization manifold in which
the outer neurons become desynchronous with the

central neuron in waves wrapping commensurately
around the central neuron [Heagy et al., 1994].
Thus, λ2 and λ3 are related to the error in the trans-
mission between two outer neurons, k and l, with
k, l �= 1.

Note that the MIR between S1 and an outer
neuron (upper bound represented by I3

P = |λ1 −λ4|
and IS represented by IS(1, k), in Fig. 3) is larger
(smaller) than the MIR between two outer neurons
(upper bound represented by I1

P = |λ1 − λ2| and
IS is represented by IS(k, l), in Fig. 3), for small
coupling (for when the channel c3 is self-excitable,
and σ ≥ σ4

min). Similar to the nearest-neighbor net-
works, the self-excitable and the non-self-excitable
channel capacities of the channel associated with
the transmission of information between closer ele-
ments (the channel c3) are achieved for a smaller
value of the coupling strength than the one nec-
essary to make the channels associated with the
transmission of information between more distant
elements (the channel c1) to achieve its two channel
capacities. That property permits this network, for

0 0.5 1
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I
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Fig. 3. MIR between the central neuron and an outer one
(black circles), I1

P , (resp. IS(1, k), in green line), and between
two outer ones (red squares), I3

P , (resp. IS(k, l), in blue line).
Blue diamonds represent the KS-entropy. Other quantities
are σ4∗ = 0.181, σ2∗ = 0.044, σ4

min = 0.84, σ2
min = 0.22,

σ4
CS = 0.27, σBPS = 0.265, σPS = 0.92, and σCS = 1.0. The

star indicates the parameter for which BPS first appears.

1Many pathological brain diseases, as Epilepsy, are associated with the appearance of synchronization.
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σ ∼= σ4
min, to transmit simultaneously reliable infor-

mation using the channel c3 and with a higher rate
using the channel c1.

Notice, in Fig. 3, that σ2∗ ∼= σ4
min

∼= σBPS
∼= σC .

So, when the channel capacity of the channel c1 is
reached, also HKS of the network is maximal, and
the network operates with its capacity.

Another point that we want to emphasize in
this network is that while a large NED between
γN and γN−1 provides a network whose channel c1

is self-excitable and can transmit information at a
large rate for a large coupling strength interval, a
large NED between γ3 and γ2 leads to a non-self-
excitable channel c3 even for small values of the cou-
pling amplitudes, and it remains non-self-excitable
for a large variation of the coupling strength. Thus,
while a large NED between the second and the first
largest eigenvalues leads to a network whose chan-
nels are predominantly of the self-excitable types,
a large NED between the second largest and the
third largest eigenvalues provides a network whose
communication channels are predominantly of the
non-self-excitable types.

2.3. Eigenvalue conditions for
optimal network topologies

Finding network topologies and coupling strengths
in order to have a network that operates in a desired
fashion is not a trivial task (see Secs. 4.6 and 4.7).
An ideal way to proceed would be to evolve the
network topology in order to achieve some desired
behavior. In this paper, we are interested in maxi-
mizing simultaneously IP , the KS-entropy, and the
average 〈IP 〉, for a large range of the coupling
strength, characteristics of an optimal network.
However, evolving a network in order to find an
optimal one would require the calculation of the
MIR in every communication channel and HKS for
every evolution step. For a typical evolution, which
requires 106 evolution steps, such an approach is
impractical.

Based on our previous discussions, however, an
optimal network topology can be realized by only
selecting an appropriate set of eigenvalues which
have some specific NED. Evolving a network by the
methods in Secs. 4.6 and 4.7 using a cost function
which is a function of only the eigenvalues of the
Laplacian matrix is a practical and feasible task.

The present section is dedicated to describe the
derivation of this cost function.

γ γ γ1 Ν−1 Ν

SE

γγγ γ1 2 Ν3

NSE

Fig. 4. Representation of the eigenvalue sets that pro-
duce optimal self-excitable (SE) and non-self-excitable active
networks (NSE).

We can think of two most relevant sets of eigen-
values which create optimal networks, and they are
represented in Fig. 4. Either the desired eigenval-
ues produce a network predominantly self-excitable
(SE, in Fig. 4) or predominantly non-self-excitable
(NSE, in Fig. 4).

In a network whose communication channels
are predominantly self-excitable, it is required that
the NED (γN −γN−1)/N is maximal and (γN−1)/N
minimal. Therefore, we want a network for which
the cost function

B1 ≡ γN − γN−1

γN−1
(8)

is maximal.
A network whose eigenvalues maximize B1 has

self-excitable channels for a large variation of the
coupling strength. As a consequence, 〈IP 〉 as well
as HKS is large for σ ∈ [σN

min, σ
2
min].

In a network whose communication channels
are predominantly non-self-excitable, it is required
that the NED (γ3 − γ2)/N is maximal and (γ2)/N
minimal. Therefore, we want a network for which
the cost function

B2 ≡ γ3 − γ2

γ2
(9)

is maximal.
A network whose eigenvalues maximize the con-

dition in Eq. (9) have non-self-excitable channels
for a large variation of the coupling strength. As
a consequence, 〈IP 〉 is large for σ ∈ [σN

min, σ
3
min],

which is a small coupling range, but since there is
still one oscillation mode that is unstable (the mode
ξ2), HKS is still large for a large range of the cou-
pling strength (σ < σ2

min). Most of the channels
will transmit information in a reliable way, since the
error in the transmission, provided by λi (i ≥ 2), of
most of the channels will be zero, once λi < 0.

Since degenerate eigenvalues produce networks
with less vibrational modes, we assume in the
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following the absence of such degenerate eigenval-
ues. In addition, we assume that there is a finite
distance between eigenvalues so that the network
becomes robust under rewiring, and therefore, per-
turbing Gij will not easily create degenerate eigen-
values.

A network that is completely synchronous and
has no unstable modes does not provide an appro-
priate environment for the transmission of infor-
mation about an external stimulus, because they
prevent the propagation of perturbations. Networks
that can be easily synchronized completely (for
small coupling strengths) requires the minimiza-
tion of γN − γ2, or in terms of the eigenratio, the
minimization of γN/γ2. We are not interested in
such a case. To construct network topologies that
are good for complete synchronization, see [Heagy
et al., 1994; Chavez et al., 2006; Zhou & Kürths,
2006].

2.4. Optimal topologies for
information transmission

Before explaining how we obtain optimal network
topologies for information transmission, it is impor-
tant to discuss the type of topology expected to be
found by maximizing either B1, in Eq. (8) or B2,
in Eq. (9). Notice that Laplacians whose eigenval-
ues maximize B1 are a perturbed version of the star
topology, and the ones that maximize B2 are a per-
turbed version of the all-to-all topology. In addition,
in order to have a network that presents many inde-
pendent modes of oscillations, it is required that
the Laplacian matrix presents as much as possible,
a large number of nondegenerate eigenvalues. That
can be arranged by rewiring (perturbing) networks
possessing either the star or the nearest-neighbor
topology, breaking the symmetry.

In order to calculate an optimal Laplacian, we
propose two approaches.

One approach, described in Sec. 4.6, is based
on the reconstruction of the network by evolving
techniques, simulating the process responsible for
the growing or rewiring of real biological networks,
a process which tries to maximize or minimize some
cost function. The results are discussed in Sec. 2.4.1.

A second approach, described in Sec. 4.7, is
based on the Spectral Theorem, and produces a
network with a pre-assigned set of eigenvalues for
its Laplacian. These eigenvalues can be chosen in
order to maximize the cost function. The results
are discussed in Sec. 2.4.2.

2.4.1. Evolving networks

In order to better understand how a network evolves
(grows) in accordance with the maximization of
the cost functions in Eqs. (8) and (9), we first
find the network configurations with a small num-
ber of elements. To be specific, we choose N = 8
elements. To show that indeed the calculated net-
work topologies produce active networks that oper-
ate as desired, we calculate the average upper bound
value of the MIR [Eq. (12)] for neural networks
described by Eqs. (7) with the topology obtained
by the evolution technique, and compare with other
network topologies. Figure 5 shows 〈IP 〉, the aver-
age channel capacity, calculated for networks com-
posed of eight elements, using one of the many
topologies obtained by evolving the network max-
imizing B1 (circles, denoted in figure by “evolv-
ing 1”), all-to-all topology (squares), star topology
(diamonds), nearest-neighbor (upper triangle), and

0 0.5 1 1.5 2
σ

0

0.02

0.04

0.06

0.08

<
I P

>

evolving 1
all-to-all
star
nearest-neighbor
evolving 2

*
*

*

**

Fig. 5. The average value of the upper bound MIR, 〈IP 〉
[as defined in Eq. (12)] for active networks composed of eight
elements using one of the many topologies obtained by evolv-
ing the network maximizing B1 (circles), all-to-all topology
(squares), star topology (diamonds), nearest-neighbor (upper
triangle), and maximizing B2 (down triangle). The values of
σ2
min indicated by the stars are σ2

min = 0.169 (evolving 1),

σ2
min = 0.05 (all-to-all), σ2

min = 0.037 (star), σ2
min = 0.037

(nearest-neighbor), and σ2
min = 0.6 (evolving 2). The evolv-

ing 1 network has a Laplacian with relevant eigenvalues
γ7 = 3.0000, γ8 = 6.1004, which produces a cost function
equal to B1 = 1.033. The evolving 2 network has a Laplacian
with relevant eigenvalues γ2 = 0.2243 and γ3 = 1.4107, which
produces a cost function equal to B2 = 5.2893.
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maximizing B2 (down triangle, denoted in figure
by “evolving 2”). The star points to the value of
σ2

min, when c1, the most unstable communication
channel (a self-excitable channel), becomes non-self-
excitable.

As desired the evolving network 1 has a large
upper bound for the MIR (as measured by 〈IP 〉)
for a large range of the coupling strength, since the
network has predominantly self-excitable channels.
The channel c1 has a large robustness parameter
∆σ2

SE, i.e. it is a self-excitable channel for σ < σ2
min,

where σ2
min = 2.0. In contrast to the other topolo-

gies, in the star, nearest-neighbor, and all-to-all
topologies, ∆σ2

SE is smaller and ∆σ2
NSE is larger.

Even though most of the channels in the evolving
2 topology are of the non-self-excitable type, 〈IP 〉
remains large even for higher values of the coupling
strength. That is due to the channel c1 which turns
into a self-excitable channel only for σ > 2.

The KS-entropies of the five active networks
whose 〈IP 〉 are shown in Fig. 5 are shown in Fig. 6.
Typically, the network capacities are reached for
roughly the same coupling strength for which the
maximum of 〈IP 〉, is reached. In between the cou-
pling strength for which the network capacities and
the maximal of 〈IP 〉 are reached, λ3 becomes neg-
ative. At this point, also BPS appears in the slow
time-scale, suggesting that this phenomena is the
behavioral signature of a network that is able to
transmit not only large amounts of information

0 0.5 1 1.5 2
σ

0

0.05

0.1

0.15

0.2

0.25

0.3

H
K

S

evolving 1
all-to-all
star
nearest-neighbor
evolving 2

Fig. 6. KS-entropy for the same active networks of Fig. 5
composed of eight elements.

between pairs of elements (high MIR) but also over-
all within the network (high HKS).

Note however, that since the evolving networks
have a small number of elements, the cost function
cannot reach higher values and therefore, the net-
works are not as optimal as they can be. For that
reason, we proceed now to evolve larger networks,
with N = 32.

Maximization of the cost function B1 leads to
the network connectivity shown in Fig. 7(a) and
maximization of the cost function B2 leads to the

0 10 20 30
0

10

20

30

l

k
(a)

0 10 20 30

k
0

10

20

30

l

(b)

Fig. 7. A point in this figure in the coordinate k × l means
that the elements Sk and Sl are connected with equal cou-
plings in a bidirectional fashion. (a) A 32 elements network,
constructed by maximizing the cost function B1 in Eq. (8),
and (b) a 32 elements network, constructed by maximizing
the cost function B2 in Eq. (9). In (a), the network has the
topology of a perturbed star, a hub of neurons connected to
all the other neurons, where each outer neuron is sparsely
connected to other neurons. The arrow points to the hub.
In (b), the network has the topology of a perturbed all-to-
all network, where elements are almost all-to-all connected.
Note that there is one element, the neuron S32, which is
only connected to one neuron, S1. This isolated neuron is
responsible to produce the large spectral gap between the
eigenvalues γ3 and γ2. In (a), the relevant eigenvalues are
γ31 = 4.97272, γ32 = 32, which produce a cost function
equal to B = 5.43478. In (b), the relevant eigenvalues are
γ2 = 0.99761, γ3 = 27.09788, which produce a cost function
equal to B2 = 26.1628.
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network connectivity shown in Fig. 7(b). In (a), the
network has the topology of a perturbed star, a neu-
ron connected to all the other outer neurons, thus a
hub, and each outer neuron is sparsely connected to
other outer neurons. The arrow points to the hub.
In (b), the network has the topology of a perturbed
all-to-all network, where elements are almost all-to-
all connected. Note that there is one element, the
neuron S32, which is only connected to one neuron,
S1. This isolated neuron is responsible to produce
the large spectral gap between the eigenvalues γ3

and γ2.
〈IP 〉 for the network topology represented in

Fig. 7(a) is shown in Fig. 8 as circles, and 〈IP 〉
for the network topology represented in Fig. 7(b)
is shown in Fig. 8 as squares. We see that the
star topology, whose connectivity is represented in
7(a), has larger 〈IP 〉 for a larger coupling strength
than the topology whose connectivity is represented
in 7(b). Other relevant parameters of the network
whose topology is represented in 7(a) are σ2

min =
0.8468, σ3

min = 0.8249, σN
min = 0.0278, σCS = 0.9762

and for the topology represented in 7(b) are σ2
min =

0.8512, σ3
min = 0.042, σN

min = 0.031, and σCS =
0.9761.

It is worth to comment that the neocortex
is being simulated in the Blue Brain project, by
roughly creating a large network composed of many
small networks possessing the star topology. By
doing that, one tries to recreate the way minicolum-
nar structures [der Malsburg, 1985] are connected to

0 0.2 0.4 0.6 0.8 1
σ

0

0.02

0.04

0.06

0.08

<
I P

>

Fig. 8. 〈IP 〉 for the networks shown in Figs. 7(a) and 7(b)
by circles and squares, respectively.

minicolumnar structures of the neocortex [Djurfeldt
et al., 2006]. Each minicolumn can be idealized as
formed by a pyramidal neuron (the hub) connected
to its interneurons, the outer neurons in the star
topology, which are responsible for the connections
among this minicolumn (small network) to others
in the minicolumn. So, the used topology to sim-
ulate minicolumns is an optimal topology in what
concerns the transmission of information.

2.4.2. Constructing a network by a given
set of eigenvalues

It is of general interest to assess if the eigenvalues
obtained from the method in Sec. 4.6 (in order to
have a network Laplacian whose eigenvalues maxi-
mize the cost function B) can be used to construct
other networks (whose Laplacian preserve the eigen-
values) maintaining still the properties here consid-
ered to be vital for information transmission.

By a given set of eigenvalues, one can create
a Laplacian matrix, G′, with nonzero real entries,
using the method described in Sec. 4.7. The result-
ing network will preserve the eigenvalues and the
synchronous solution in Eq. (2), which means that
the values of Ii

P of the topology created by the
method in Sec. 4.7 are equal to the values of the net-
work topologies that provide the set of eigenvalues,
in the following example, the network connectivities
represented in Figs. 7(a) and 7(b).

In Figs. 9(a) and 9(b), circles represent the
values of HKS for the network whose connectivi-
ties are represented in Figs. 7(a) and 7(b), and the
squares represent this same quantity for a network
whose Laplacian is calculated by the method in
Sec. 4.7, in order to preserve the same eigenvalues
of the network topologies represented in Figs. 7(a)
and 7(b).

The main difference between these two net-
works is that for the one constructed by the method
in Sec. 4.7, when λ2 becomes zero, simultaneously
λ1 becomes also zero, a consequence of the fact that
all the neurons enter in a nontrivial but periodic
oscillation. In general, however, both networks pre-
serve the characteristics needed for optimal infor-
mation transmission: large amounts of MIR and
HKS, however, the ones constructed by the evolu-
tion technique have larger HKS, and possess a larger
MIR for larger ranges of the coupling strength.
The network obtained by the method in Sec. 4.7
is more synchronizable, a consequence of the fact
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Fig. 9. HKS for a network evolved by the method in Sec. 4.6,
in circles, and in squares, for a network whose Laplacian is
calculated by the method in Sec. 4.7 in order for the Laplacian
to generate the same eigenvalues as the ones generated by the
network Laplacian calculated by the evolution technique. In
(a), we consider the same network topology whose connec-
tivity is represented in Figs. 7(a), and 7(b), we consider the
same network topology whose connectivity is represented in
Fig. 7(b). Note that in general, a Laplacian of an active net-
work whose elements are connected with different coupling
strengths, possess a smaller value of HKS.

that the coupling strengths are nonequal [Chavez
et al., 2006; Zhou & Kürths, 2006].

2.5. Active networks formed by
nonchaotic elements

The purpose of the present work is to describe how
information is transmitted via an active media, a
network formed by dynamical systems. There are
three possible asymptotic stable behaviors for an
autonomous dynamical system: chaotic, periodic or
quasi-periodic. A quasi-periodic behavior can be
usually replaced by either a chaotic or a periodic
one, by an arbitrary perturbation. For that reason,
we neglect such a state and focus the attention on
active channels that are either chaotic or periodic.

The focus of the present section is to analyze
how a source of information can be transmitted
through active channels that are nonchaotic, that
is periodic, and that possess negative Lyapunov
exponents.

Equation (5) is defined for positive exponents.
However, such an equation can also be used to
calculate an upper bound for the rate of mutual
information in systems that also possess nega-
tive Lyapunov exponents. Consider first a one-
dimensional contracting system being perturbed by
a random stimulus. Further consider that the stim-
ulus changes the intrinsic dynamics of this sys-
tem. This mimics the process under which an active
element adapts to the presence of a stimulus.

Suppose the stimulus, θn, can be described by a
discrete binary random source with equal probabili-
ties of generating “0” or “1”. Whenever θn = 0, the
system presents the dynamics xn+1 = xn/2, oth-
erwise xn+1 = (1 + xn)/2. It is easy to see that
the only Lyapunov exponent of this mapping, λ1,
which is equal to the conditional exponent, λ1, is
negative. Negative exponents do not contribute to
the production of information. From Eq. (5) one
would arrive at IP = 0. However, all the informa-
tion about the stimulus is contained in the trajec-
tory. If one measures the trajectory xn, one knows
exactly what the stimulus was, either a “0” or a “1”.
The amount of information contained in the stimu-
lus is log(2) per iteration which equals the absolute
value of the Lyapunov exponent, |λ1|. In fact, it is
easy to show that IC = IP = |λ1| = |λ1| = log(2),
or if we use the interpretation of [Corron et al.,
2006], IC = IP = λ, where λ = |λ1| is the positive
Lyapunov exponent of the time-inverse chaotic tra-
jectory, xn+m, xn+m−1, . . . , x0, which equals the
rate of information production of the random
source. So, in this type of active communication
channel, one would consider in Eq. (5) the positive
Lyapunov exponents of the time-inverse trajectory,
or the absolute value for the negative Lyapunov
exponent.

Another example was given in [Baptista &
Kürths, 2008]. In this reference we have shown that
a chaotic stimulus perturbing an active system with
a space contracting dynamics (a negative Lyapunov
exponent) might produce a fractal set. We assume
that one wants to obtain information about the
stimulus by observing the fractal set. The rate of
information retrieved about the stimulus on this
fractal set equals the rate of information produced
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by the fractal set. This amount is given by D1|λ|,
where D1 is the information dimension of the frac-
tal set and |λ| the absolute value of the negative
Lyapunov exponent. In fact, D1|λ| is also the rate
of information produced by the stimulus. So, if an
active system has a space contracting dynamics, the
channel capacity equals the rate of information pro-
duced by the stimulus. In other words, the amount
of information that the system allows to be trans-
mitted equals the amount of information produced
by the chaotic stimulus.

2.6. The role of a time-dependent
stimulus in an active network

The most general way of modeling the action of
an arbitrary stimulus perturbing an active network
is by stimulating it using uncorrelated white noise.
Let us assume that we have a large network with
all the channels operating in non-self-excitable fash-
ion. We also assume that all the transversal eigen-
modes of oscillations except one are stable, and
therefore do not suffer the influence of the noise.
Let us also assume that the noise is acting only
on one structurally stable (= far from bifurcation
points) element, Sk. To calculate the upper bound
of the MIR between the element Sk and another ele-
ment Sl in the network, we assume that the action
of the noise does not alter the value of λ1. Then,
the noise on the element Sk is propagated along the
vibrational mode associated with the one unstable
transversal direction, whose conditional exponent
is λ2. As a consequence, the action of the noise
might only increase λ2, while not affecting the neg-
ativeness of all the other exponents (λm,m > 2),
associated with stable transversal modes of oscilla-
tion. This means that the channels responsible for
transmiting large amounts of information (associ-
ated with λm, with m large) will not be affected. So,
for such types of noises, Eq. (5) of the autonomous
network is an upper bound for the nonautonomous
network.

Consider now a situation where the noise acts
equally on all the elements of an active network.
The mapping of Eq. (14) was proposed as a way
to understand such a case. Consider the non-self-
excitable map for s = −1. Note that the term
ρ(x2

n + y2
n) that enters equally in all the maps has

statistical properties of a uniformly distributed ran-
dom noise. Calculating IP for ρ = 0 (the noise-free
map) we arrive at IP

∼= 2σ, for small σ, while the
true MIR IC

∼= 2(σ−ρ). These results are confirmed

by exact numerical calculation of the Lyapunov
exponents of Eq. (14) as well as the calculation of
the conditional exponents of the variational equa-
tions. So, this example suggests that Eq. (5) cal-
culated for an autonomous nonperturbed network
gives the upper bound for the mutual information
rate in a nonautonomous network.

3. Discussions

We have shown how to relate in an active network
the rate of information that can be transmitted
from one point to another, regarded as mutual infor-
mation rate (MIR), the synchronization level among
elements, and the connecting topology of the net-
work. By active network, we mean a network formed
by elements that have some intrinsic dynamics and
can be described by classical dynamical systems,
such as chaotic oscillators, neurons, phase oscilla-
tors, and so on.

Our main concern is to suggest how to con-
struct an optimal network. A network that simul-
taneously transmits information at a large rate, is
robust under coupling alterations, and further, it
possesses a large number of independent channels
of communication, pathways along which informa-
tion travels.

We have studied two relevant conditions that
the eigenvalues of the Laplacian matrix have to sat-
isfy in order for one to have an optimal network. The
Laplacian matrix describes the coupling strengths
among each element in the active network.

The two eigenvalue conditions are designed
in order to produce networks that are either
self-excitable [maximizing Eq. (8)] or non-self-
excitable [maximizing Eq. (9)] (see definition of
self-excitability in Sec. 4.2). Self-excitable net-
works have communication channels that trans-
mit information at a higher rate for a large range
of the coupling strength. Most of the oscillation
modes in these networks are unstable, and there-
fore, information is mainly propagated at a desyn-
chronous environment. Non-self-excitable networks
have communication channels that transmit infor-
mation at a higher rate for a small range of the
coupling strength, however, they have channels that
transmit reliable information at a moderate rate
for large range of coupling strengths. Most of the
oscillation modes in these networks are stable, and
therefore, information is mainly propagated in a
synchronous environment, a highly reliable environ-
ment for information transmission.
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Therefore, to determine the topology of an opti-
mal network one does not need to know information
about the intrinsic dynamics of the elements form-
ing the network.

Once the network topology is obtained such
that the eigenvalues of the Laplacian matrix maxi-
mizes, either the cost function in Eq. (8) or the one
in Eq. (9), the actual amount of information that
can be transmitted using the obtained topology will
depend on the intrinsic dynamics of the elements
forming the network [F in Eq. (1)] and also on the
type of coupling [H in Eq. (1)], of only two coupled
elements [see Eq. (6)].

In the examples studied here, phase synchro-
nization (PS) in the subspace (x, y) results in
a large decrease of the KS-entropy (see Figs. 1
and 2) as well as of the MIR and IP . However,
a special type of partial phase synchronization,
the BPS, appears simultaneously when some com-
munication channel achieves its capacity. So, BPS
[Baptista & Kürths, 2008] can provide an ideal
environment for information transmission, proba-
bly a necessary requirement in the brain [Lachaux
et al., 1999; Tass et al., 2003]. Similarly, in networks
of Rössler oscillators, a type of non-self-excitable
network, PS is the phenomenom responsible to
identify when the network is operating in a regime
of high MIR [Baptista & Kürths, 2005; Baptista
et al., 2006a].

In order to construct an optimal network, we
have used two approaches. One based on a Monte
Carlo evolving technique, which randomly mutates
the network topologies in order to maximize the
cost functions in Eqs. (8) and (9) (see Sec. 4.6). We
do not permit the existence of degenerate eigenval-
ues. As a consequence γN − γN−1 as well as γ3 − γ2

is never zero. The mutation is performed in order
to maximize the cost function, but we only con-
sider network topologies for which the value of the
cost functions B1 and B2 remain constant for about
10 000 iterations of the evolving technique, within
1 000 000 iterations. Even though more mutations
could lead to networks that have larger values of
the cost function, we consider that a reasonably
low number of mutations would recreate what usu-
ally happens in real networks. The other approach
creates an arbitrary Laplacian which reproduces a
desired set of eigenvalues.

Although both topologies provide larger
amounts of MIR and HKS, meaning large network
and channel capacities, the topology provided by

the evolution technique, which consider coupling
strengths with equal strengths, is superior in what
concerns information transmission. That agrees
with the results of in [Baptista & Kürths, 2008]
which state that networks composed of elements
with nonequal control parameters can transmit less
information than networks formed by equal ele-
ments, since networks whose coupling strengths are
nonequal can be considered to be a model for net-
works with nonequal control parameters.

So, if brain-networks somehow grow in order to
maximize the amount of information transmission,
simultaneously remaining very robust under cou-
pling alterations, the minimal topology that small
neural networks must have should be similar to the
one in Fig. 7(a), i.e. a network with a star topology,
presenting a central element, a hub, very well con-
nected to other outer elements, which are sparsely
connected.

Even though most of the examples worked out
here concern simulations performed in a neural net-
work of electrically coupled Hindmarsh–Rose neu-
rons, our theoretical approaches to find optimal
topologies can be used to a large class of dynamical
systems, in particular also to networks of synapti-
cally (chemically) connected neurons. A neural net-
work with neurons connected chemically would also
be optimal if one connects neurons by maximizing
either Eq. (8) or Eq. (9). The novelty introduced
by the chemical synapses is that it can enhance
(as compared with the electrical synapses) both
the self-excitable (using excitable synapses) or the
non-self-excitable (using inibitory synapses) char-
acteristic of the communication channels as well as
it can enhance 〈IP 〉 [Baptista et al., 2010]. From
the biological point-of-view, of course, the chemical
synapses provide the long-range coupling between
the neurons. So, the simulations performed here for
the larger HR networks should be interpreted as
simulations of a general active network, since neu-
rons connected electrically can only make nearest-
neighbor connections.

4. Methods

4.1. Calculating the MIR by
symbolic encoding of the
trajectory

The MIR between two neurons can be roughly
estimated by assigning symbols to the neurons’s
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trajectory and then by measuring the mutual infor-
mation from the Shannon entropy [Shannon &
Weaver, 1949] of the symbolic sequences. From
[Shannon & Weaver, 1949], the mutual information
between two signals Sk and Sl is given by

I ′S = H(Sk) − H(Sl |Sk). (10)

H(Sk) is the uncertainty on what Sk has sent
(entropy of the message), and H(Sl |Sk) is the
uncertainty on what was sent, after observing Sl. In
order to estimate the mutual information between
two chaotic neurons by the symbolic dynamics,
we have to proceed with a nontrivial technique
to encode the trajectory, which constitutes a dis-
advantage to chaotic systems. We represent the
time at which the nth spike happens in Sk by
T n

k , and the time interval between the nth and
the (n + 1)th spikes, by δT n

k . A spike happens
when xk becomes positive and we consider about
20 000 spikes. We encode the spiking events using
the following rule. The ith symbol of the encod-
ing is a “1” if a spike is found in the time inter-
val [i∆, (i + 1)∆[, and “0” otherwise. We choose
∆ ∈ [min(δT n

k ),max(δT n
k )] in order to maximize I ′S .

Each neuron produces a symbolic sequence that is
split into small nonoverlapping sequences of length
L = 12. The Shannon entropy of the encoding sym-
bolic sequence (in units of bits), is estimated by
H = −∑

m Pm log2 Pm where Pm is the probability
of finding one of the 2L possible symbolic sequences
of length L. The term H(Sl|Sk) is calculated by
H(Sl|Sk) = −H(Sl)+H(Sk;Sl), with H(Sk;Sl) rep-
resenting the Joint Entropy between both symbolic
sequences for Sk and Sl.

Finally, the MIR (in units of bits/unit time),
IS , is calculated from

IS =
I ′S

∆ × L
. (11)

The calculation of the IS by means of Eq. (11)
should be expected to underestimate the real value
for the MIR. Since the HR neurons have two time-
scales, a large sequence of sequential zeros in the
encoding symbolic sequence should be expected to
be found between two bursts of spikes (large δT n

k
values), which lead to a reduction in the value
of H(Sk) followed by an increase in the value of
H(Sl |Sk), since there will be a large sequence of
zeros happening simultaneously in the encoding
sequence for the interspike times of Sk and Sl.

4.2. Self-excitability

In [Baptista & Kürths, 2008] self-excitability was
defined in the following way. An active network
formed by N elements, is said to be self-excitable
if HKS(N,σ) > HKS(N,σ = 0), which means
that the KS-entropy of the network increases as
the coupling strength is increased. Thus, for non-
self-excitable systems, an increase in the coupling
strength among the elements forming the net-
work leads to a decrease in the KS-entropy of the
network.

Here, we adopt also a more flexible definition,
in terms of the properties of each communication
channel. We define that a communication channel
ci behaves in a self-excitable fashion if λi > λ1. It
behaves in a non-self-excitable fashion if λi ≤ λ1.

4.3. Mutual information rate
(MIR), channel capacity, and
network capacity

In this work, the rate with which information is
exchanged between two elements of the network is
calculated in different ways. Using the approaches
of [Baptista & Kürths, 2005, 2008], we can have an
estimate of the real value of the MIR, and we refer
to this estimate as IC . Whenever we use Eq. (5) to
calculate the upper bound for the MIR, we will refer
to it as IP . Finally, whenever we calculate the MIR
through the symbolic encoding of the trajectory as
described in Sec. 4.1, we refer to it as IS .

We define the channel capacity of a commu-
nication channel formed by two oscillation modes
depending on whether the channel behaves in a self-
excitable fashion or not. So, for the studied network,
every communication channel possess two channel
capacities, the self-excitable capacity and the non-
self-excitable one. A channel ci operates with its
self-excitable capacity when Ii

P is maximal, what
happens at the parameter σ(i+1)∗. It operates with
its non-self-excitable capacity when λi+1 = 0.

We also define the channel capacity in an aver-
age sense. In that case, the averaged channel capac-
ity is given by the maximal value of the average
value

〈IP 〉 =
N∑

i=2

1
N − 1

|λ1 − λi|, (12)

The network capacity of a network composed
of N elements, CN (N), is defined to be the maxi-
mum value of the Kolmogorov–Sinai (KS) entropy,
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HKS, of the network. For chaotic networks, the KS-
entropy, as shown by Pesin [1977], is the sum of all
the positive Lyapunov exponents. Notice that if I
denotes MIR then

I ≤ HKS. (13)

As shown in [Baptista & Kürths, 2008] and
from the many examples treated here, CN (N) ∝ N ,
and so, the network capacity grows linearly with the
number of elements in an active network.

4.4. Understanding Eq. (5)

Let us understand Eq. (5) by using an analyti-
cal example. For an introduction to the quantities
shown here, see Sec. 4.3. Consider the following two
coupled maps:

xn+1 = 2xn − ρx2
n + 2sσ(yn − xn),

yn+1 = 2yn − ρy2
n + 2sσ(xn − yn),

(14)

with ρ ≥ 0, s = ±1, and xn, yn ∈ [0, 1], which can
be evolved by applying the mod(1) operation.

4.4.1. Positiveness of the MIR in Eq. (14)

Here, we assume that ρ = 0. This map pro-
duces two Lyapunov exponents λ1 = log(2) and
λ2 = log(2 − 4sσ). Since this map is linear, the
conditional exponents are equal to the Lyapunov
exponents.

Using the same ideas as in [Baptista & Kürths,
2008], actually an interpretation of the way Shan-
non [Shannon & Weaver, 1949] defines mutual infor-
mation, the mutual information rate, IP , exchanged
between the variables x and y is given by the rate of
information produced in the one-dimensional space
of the variable x, denoted as Hx, plus the rate of
information produced in the one-dimensional space
of the variable y, denoted as Hy, minus the rate of
information production in the (x, y) space, denoted
as Hxy. But, Hx = Hy = max(λ1, λ2), and Hxy =
HKS = λ1 + λ2, if (λ1, λ2) > 0,Hxy = HKS = λ1, if
λ2 < 0, and Hxy = HKS = λ2, otherwise.

So, either IP = λ1−λ2, case that happens when
s = +1, or IP = λ2 − λ1, case that happens when
s = −1. If s = +1, the larger the coupling strength,
the smaller the KS-entropy, HKS. If s = −1, the
larger the coupling strength, the larger HKS. In fact,
as we discuss further, Eq. (14) for s = −1 is a

model for a self-excitable channel, and for s = +1
is a model for a non-self-excitable channel. In either
case, the MIR can be calculated by using the mod-
ulus operation as in IP = |λ1 − λ2|. For larger net-
works, one can generalize such an equation using
the conditional exponents arriving at an equation
of the form as presented in Eq. (5). This equation
points out to a surprising fact. Even when the level
of desynchronization in Eq. (14) is larger (λ2 > λ1),
which happens when s = −1, there is a positive
amount of information that is transferred between
the two variables.

In Fig. 10, we show the phase space of Eq. (14)
for a coupling strength equal to σ = 0.237. In (a),
we illustrate a typical situation that happens in
non-self-excitable channels (s = +1). The elements
become synchronous presenting a trajectory that
most of the time lies on the synchronization mani-
fold defined by xn − yn = 0. In (b), we show a typi-
cal situation that happens in self-excitable channels
(s = −1). The elements become nonsynchronous
presenting a trajectory that lies on the transversal
manifold defined by xn + yn − c = 0, with c being a
constant within the interval c ∈ [0, 1].

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y n

xn

(a)

0 0.2 0.4 0.6 0.8 1
xn

0

0.2

0.4

0.6

0.8

1

y n

(b)

Fig. 10. Trajectory of Eq. (14) for σ = 0.237 with (a) s = −1
and (b) s = 1.
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In (a), by observing the variable xn one can cor-
rectly guess the value of yn since xn

∼= yn. Appar-
ently, that is not the case in (b): by observing
the variable xn, one might have difficulty in guess-
ing the value of the variable yn, since c ∈ [0, 1].
Notice that the larger the amount of information
being exchanged between xn and yn, the larger the
chance that we guess correctly. In order to esti-
mate the amount of information being exchanged
between xn and yn, we proceed in the follow-
ing way.

For the non-self-excitable channel (s = +1), we
coarse-grain the phase space in L2 small squares.
Each square has one side that represents an interval
of the domain of the variable xn and another side
which is an interval of the domain of the variable
yn. Taking p

(i)
x , the probability that a trajectory

point visits the interval xn = [(i − 1)/L, i/L], with
i = 1, . . . , L, and p

(i)
y , the probability that a trajec-

tory point visits the interval yn = [(i − 1)/L, i/L],
and finally, p

(i,j)
x;y , the probability that a trajec-

tory point visits a square defined by xn = [(i −
1)/L, i/L], yn = [(j − 1)/L, j/L], with j = 1, . . . , L,
then, the MIR between xn and yn, denoted by I, is
provided by

I =
−1

log(L)

[
−

∑
i

log(p(i)
x ) −

∑
i

log(p(i)
y )

+
∑
i,j

log(p(i,j)
x;y )


. (15)

Notice that the evaluation of the MIR by Eq. (15)
underestimates the real value for the MIR, since
Eq. (14) is a dynamical system and the infor-
mation produced by the dynamical variables (for
example, the term −∑

i log(p(i)
x ) that measures the

information produced by the variable xn) should
be provided by conditional probabilities, i.e. the
probability that a trajectory point has of visit-
ing a given interval followed by another interval,
and so on, in fact the assumption used to derive
Eq. (5).

In Fig. 11(a), we show the phase space of
Eq. (14) with s = +1 and for σ = 0.237. In
Fig. 11(b), we show by the plus symbol, IP , as cal-
culated by Eq. (5) and by circles, I, as estimated
by Eq. (15).

For the self-excitable channel (s = −1) Eq. (15)
supplies a null MIR, and therefore, it can no longer

be used. But, as discussed in [Baptista & Kürths,
2008], the MIR can be coordinate dependent, and
one desires to have the coordinate that maximizes
the MIR. Aiming to maximize the MIR, when the
channel is of the self-excitable type, we transform
Eq. (14) into an appropriate coordinate system,
along the transversal manifold, where most of the
information about the trajectory position is located.
We define the new coordinate as Xn = 1/2(xn −
yn+1) and Xn+1 = 1/2(xn+1−yn+1+1). The trajec-
tory (Xn,Xn+1) in this new coordinate system [for
the same parameters as in Fig. 10(b)] is depicted in
Fig. 11(c).

The MIR being transferred between Xn and
Xn+1 is related to the knowledge we acquire about
Xn+1 by observing Xn, or vice-versa. In Fig. 11(c),
we can only be certain about the value of Xn+1,
when Xn is close to either 0 or 1.

To estimate the MIR, we recall that an encoded
version of such a dynamical system can be treated
as a symmetric binary channel of communication.
Xn is regarded as the transmitter and Xn+1 is
regarded as the receiver. Whenever the map in
the transformed coordinates Xn versus Xn+1 is
noninvertible, we consider that by measuring the
trajectory point Xn+1 one cannot guarantee the
exact position of the trajectory of Xn, which con-
stitutes an error in the transmission of informa-
tion. Whenever the map is invertible, by measur-
ing the trajectory of Xn+1 one can surely know
the exact position of the trajectory Xn, which cor-
responds to a correct transmission of information.
Taking p to be the probability at which the map is
invertible, then, the MIR between Xn and Xn+1 is
given by

Ie = 1 + (1 − p) log(1 − p) + p log(p). (16)

The value of 10Ie for Eq. (14) with s = −1
are shown in Fig. 11(d) by circles. The theoretical
value, IP , provided by Eq. (5) is shown by the plus
symbol.

A final comment on the characteristics of a self-
excitable channel and of a non-self-excitable chan-
nel is that while in a self-excitable channel the
larger the synchronization level, the larger is the
MIR but the smaller the KS-entropy, in a non-self-
excitable channel the larger is the desynchroniza-
tion level, the larger the MIR and the larger the
KS-entropy. Note that HKS = 2 log(2)+log(1−2sσ),
for σ < 0.25.
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Fig. 11. Results for Eq. (14) with σ = 0.237 and s = −1 [shown in (a) and (b)] and for s = −1 [shown in (c) and (d)]. Phase
space of Eq. (14) and in (b), the MIR as calculated by Eq. (5) and as estimated by Eq. (15). (c) Phase space of Eq. (14) in
the new coordinate frame Xn versus Xn+1 and in (c), the MIR as calculated by Eq. (5) and as estimated by Eq. (16).

4.4.2. Positiveness of the MIR for
self-excitable channels in the
(nonlinear ) HR network

To show that indeed Ii
P should be positive in case

of a self-excitable channel in the HR network, one
can imagine that in Eq. (1) the coupling strength
is arbitrarily small and that N = 2. In this situa-
tion, the Lyapunov exponent spectra obtained from
Eq. (3) are a first-order perturbative version of the
conditional exponents, and they appear organized
by their strengths. One arrives at λ1

∼= λ2 and
λ2

∼= λ1, which means that the largest Lyapunov
exponent equals the transversal conditional expo-
nent and the second largest Lyapunov exponent
equals the conditional exponent associated with the
synchronous manifold, i.e. the Lyapunov exponent
of Eq. (2). Using similar arguments to those in
[Baptista & Kürths, 2008; Baptista et al., 2008a,
2008b; Baptista & Kürths, 2005], we have that

the MIR is given by the largest Lyapunov expo-
nent minus the second largest, and therefore, IC =
λ1 − λ2, which can be put in terms of conditional
exponents as IP ≤ λ2 − λ1.

4.4.3. The inequality in Eq. (5)

To explain the reason of the inequality in Eq. (5),
consider the nonlinear term in Eq. (14) is non-null
and s = 1, and proceeds as further.

For two coupled systems, the MIR can be writ-
ten in terms of Lyapunov Exponents [Baptista &
Kürths, 2008; Mendes, 1998]. For two coupled sys-
tems, the MIR can be exactly calculated by IC =
λ1 − λ2, since λ‖ = λ1 and λ⊥ = λ2, assuming that
both λ1 and λ2 are positive. Calculating the con-
ditional exponents numerically, we can show that
IP ≥ IC , and thus IP is an upper bound for the
MIR. For more details on this inequality, see [Bap-
tista et al., 2010].
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4.5. Bust phase synchronization
(BPS)

Phase synchronization [Pikovsky et al., 2003] is a
phenomenon defined by

|∆φ(k, l)| = |φk − mφl| ≤ r, (17)

where φk and φl are the phases of two elements Sk

and Sl,m = ωl/ωk is a real number [Baptista et al.,
2004], where ωk and ωl are the average frequen-
cies of oscillation of the elements Sk and Sl, and
r is a finite, real number [Baptista et al., 2006b].
In this work, we have used in Eq. (17) m = 1,
which means that we search for ωk : ωl = 1:1 (ratio-
nal) phase synchronization [Pikovsky et al., 2003]. If
another type of ωk : ωl-PS is present, the methods in
[Baptista et al., 2005; Pereira et al., 2007a; Baptista
et al., 2006b] can detect it.

The phase φ is a function constructed on a 2D
subspace, whose trajectory projection has proper
rotation, i.e, it rotates around a well defined center
of rotation. So, the phase is a function of a subspace.
Usually, a good 2D subspace of the HR neurons is
formed by the variables x and y, and whenever there
is proper rotation in this subspace a phase can be
calculated as shown in [Pereira et al., 2007b] by

φs(t) =
∫ t

0

ẏx − ẋy

(x2 + y2)
dt. (18)

If there is no proper rotation in the subspace (x, y)
one can still find proper rotation in the velocity
subspace (ẋ, ẏ) and a corresponding phase that
measures the displacement of the tangent vector
[Baptista et al., 2005] can be calculated as shown
in [Pereira et al., 2007b] by

φv(t) =
∫ t

0

ÿẋ − ẍẏ

(ẋ2 + ẏ2)
dt. (19)

If a good 2D subspace can be found, one can also
define a phase by Hilbert transform, which basi-
cally transforms an oscillatory scalar signal into
a two component signal [Gabor, 1946]. In the
active network of Eq. (7) with an all-to-all topol-
ogy and N = 4, for the coupling strength interval
σ ∼= [0, 0.05], the subspace (x, y) has proper rota-
tion, and therefore, φs(t) is well defined and can
be calculated by Eq. (18). However, for this cou-
pling interval, Eq. (17) is not satisfied, and there-
fore, there is no PS between any pair of neurons in
the subspace (x, y).

For the coupling strength interval σ ∼=
[0.05, 0.24], the neuron trajectories lose proper

rotation both in the subspaces (x, y) and (ẋ, ẏ). In
such a case, neither φs(t) nor φv(t) can be calcu-
lated. This is due to the fact that the chaotic tra-
jectory gets arbitrarily close to the neighborhood of
the equilibrium point (x, y) = (0, 0), a manifesta-
tion that a homoclinic orbit to this point exists.

In fact, the Hilbert transform fails to provide
the phase from either scalar signals x or y, since
these signals do not present any longer an oscil-
latory behavior close to the equilibrium point. In
such cases, even the traditional technique to detect
PS by defining the phase as a function that grows
by 2π, whenever a trajectory component crosses
a threshold cannot be used. Since the trajectory
comes arbitrarily close to the equilibrium point,
no threshold can be defined such that the phase
difference between pairs of neurons is bounded.
Notice that by this definition the phase difference
equals 2π∆N , where ∆N is the difference between
the number of times the trajectories of Sk and Sl

cross the threshold. For the neural networks, ∆N
could represent the difference between the number
of spikes between two neurons. A spike is assumed
to happen in Sk if xk becomes positive.

In order to check if indeed PS exists in at
least one subspace, alternative methods of detection
must be employed as proposed in [Baptista et al.,
2005; Pereira et al., 2007a, 2007b]. In short, if PS
exists in a subspace then by observing one neuron
trajectory at the time the other bursts or spikes
(or any typical event), there exists at least one spe-
cial curve, Γ, in this subspace, for which the points
obtained from these conditional observations do not
visit its neighborhood. A curve Γ is defined in the
following way. Given a point x0 in the attractor pro-
jected onto the subspace of one neuron where the
phase is defined, Γ is the union of all points for
which the phase, calculated from this initial point
x0 reaches n〈r〉, with n = 1, 2, 3, . . . ,∞ and 〈r〉 a
constant, usually 2π. Clearly an infinite number of
curves Γ can be defined. For coupled systems with
sufficiently close parameters that present in some
subspace proper rotation, if the points obtained
from the conditional observations do not visit the
whole attractor projection on this subspace, one can
always find a curve Γ that is far away from the con-
ditional observations. Therefore, for such cases, to
state the existence of PS one just has to check if the
conditional observations are localized with respect
to the attractor projection on the subspace where
the phase is calculated.

1230008-21

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

2.
22

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 D
E

 S
A

O
 P

A
U

L
O

 o
n 

04
/2

2/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



March 12, 2012 15:58 WSPC/S0218-1274 1230008

M. S. Baptista et al.

Conditional observations of the neuron trajec-
tory Sk in the subspace (x, y), whenever another
neuron Sl spikes, in the system modeled by Eqs. (7)
with a star coupling topology and N = 4, are not
localized with respect to a curve Γ, for the cou-
pling strength σ < σPS. An example can be seen
in Fig. 12(a), for σ = 0.265. The set of points
produced by the conditional observations are rep-
resented by red circles, and the attractor by the
green points. Therefore, there is no PS in the
subspace (x, y).

In order to know on which subspace PS occurs,
we proceed in the following way. We reconstruct

-2 -1 0 1 2

x2(t)

-20

-15

-10

-5

0

y 2
(t

)

Γ

(a)

2 2.5 3 3.5 4 4.5 5

z2(t-τ)

2

2.5

3

3.5

4

4.5

5

z 2
(t

)

Γ

(b)

Fig. 12. The network of Eqs. (7) with a star configuration
with N = 4, and σ = 0.265. The curve Γ, a continuous curve
transversal to the trajectory, is pictorially represented by the
straight line Γ. (a) The green line represents the attractor
projection on the subspace (x, y) of the neuron S2, and red
circles represent the points obtained from the conditional
observations of the neuron S2 whenever the neuron S4 spikes.
The point (x, y) = (0.0) does not belong to Γ. (b) Green dots
represent the reconstructed attractor z2(t) × z2(t − τ ), for
τ = 30, and red circles represent the points obtained from
the conditional observation of neuron S2, whenever the recon-
structed trajectory of the neuron S4 crosses the threshold line
z4(t − τ ) = 3.25 and z4(t) > 3.

the neuron attractors by means of the time-
delay technique, using the variable z. This variable
describes the slow time-scale, responsible for the
occurrence of bursts. The reconstructed attractor
z(t) × z(t − τ) has proper rotation [see Fig. 12(b)]
and the points obtained from the conditional obser-
vations do not visit the neighborhood of a curve Γ,
then, there is PS in this subspace. Indeed, we find
localized sets with respect to a curve Γ in the recon-
structed subspace (z(t) × z(t − τ)), for σ ≥ 0.265.
So, σBPS = 0.265.

So, for the coupling σ = [σBPS, σPS[, there is
no PS in the subspace (x, y) but there is PS in
the subspace of the variable z. In this type of syn-
chronous behavior, the bursts are phase synchro-
nized while the spikes are not. This behavior is
regarded as bursting phase synchronization (BPS).
For simplicity in the analyses, we say that BPS hap-
pens when for at least one pair of neurons there
is phase synchronization in the bursts. Phase syn-
chronization (PS) happens in the network when the
average absolute phase difference

2
N(N − 1)

∑
k

∑
l

|∆φL(k, l)|,

with k = 1, N − 1 and l = k + 1, N among all
the pairs of elements, is smaller than 2π, with the
phases defined by either Eq. (18) or Eq. (19), where
the index L represents either the index s or v. Fur-
ther, we say complete synchronization (CS) takes
place [Heagy et al., 1994], when the variables of one
neuron equal the variables of all the other neurons.

For the analyses in this work, σBPS represents
the coupling parameter for which BPS first appears,
i.e. BPS exists if σ ≥ σBPS. σPS represents the
coupling parameter for which PS first appears, i.e.
PS exists if σ ≥ σPS. Finally, σCS represents the
coupling parameter for which CS first appears, i.e.
CS exists if σ ≥ σCS. There might exist particu-
lar parameters for which PS (or BPS) is lost even if
σ ≥ σPS (resp. σ ≥ σBPS). But these parameters are
not typical and we will ignore them. For example,
in the network composed of six elements with the
nearest-neighbor topology [Fig. 2(b)], for σ ∼= 0.825
PS is lost.

Note that these phenomena happen in a hier-
archical way organized by the “intensity” of syn-
chronization. The presence of a stronger type of
synchronization implies in the presence of other
softer types of synchronization the following order:
CS → PS → BPS.
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4.6. Evolutionary construction of a
network

In our simulations, we have evolved networks of
equal bidirectional couplings.2 That means that the
Laplacian in Eq. (1) is a symmetric matrix of dimen-
sion N with integer entries {0, 1} for the off diagonal
elements, and the diagonal elements equal −∑

j Gij ,
with i �= j.

Finding the network topologies which maximize
B in Eq. (8) is impractical even for moderately
large N . Figuring out by “brute force” which Lapla-
cian produces the desired eigenvalue spectra would
require the inspection of a number of 2N(N−1)/2

N ! con-
figurations. To overcome this difficulty, [Ipsen &
Mikhailov, 2002] proposed an evolutionary proce-
dure in order to reconstruct the network in order to
maximize some cost function. Their procedure has
two main steps regarded as mutation and selection.
The mutation steps correspond to a random modi-
fication of the pattern of connections. The selection
steps consist in accepting or rejecting the mutated
network, in accordance with the criterion of maxi-
mization of the cost function B, in Eq. (8).

We consider a random initial network configu-
ration, with N elements, which produce an initial
Laplacian G0, whose eigenvalues produce a value
B0 for the cost function. We take at random one
element of this network and delete all links con-
nected to it. In the following, we choose randomly
a new degree k to this element and connect this
element (in a bidirectional way) to k other ele-
ments randomly chosen. This procedure generates
a new network that possesses the Laplacian G′,
whose eigenvalues produce a value B′. To decide
if this mutation is accepted or not, we calculate
∆ε = B′ − B0. If ∆ε > 0, the new network whose
Laplacian is G′ is accepted. If, on the other hand,
∆ε < 0, we still accept the new mutation, but with
a probability p(∆ε) = exp(−∆/εT ). If a mutation
is accepted then the network whose Laplacian is G0

is replaced by the network whose Laplacian is G′.
The parameter T is a kind of “temperature”

which controls the level of noise responsible for the
mutations. It controls whether the evolution process
converges or not. Usually, for high temperatures one
expects the evolution never to converge, since new
mutations that maximizes B are often not accepted.
In our simulations, we have used T ∼= 0.0005.

These steps are applied iteratively up to the
point when |∆ε| = 0 for about 10 000 steps, being
that we consider an evolution time of the order of
1 000 000 steps. That means that the evolution pro-
cess has converged after the elapse of some time to
an equilibrium state. If for more than one network
topology |∆ε| = 0 for about 10 000 steps, we choose
the network that has the larger B value.

This constraint avoids the task of finding the
most optimal network topology. However, we con-
sider that a reasonably low number of mutations
would recreate what usually happens in real
networks.

4.7. Constructing a network from a
set of eigenvalues

Given a N × N Laplacian matrix G, we can diago-
nalize it by an orthogonal transformation, viz.

OT · G ·O = γ1, (20)

where 1 represents the Unity matrix, γ represents
the vector that contains the set of eigenvalues γi of
G (i = 1, . . . , N), and O is an orthogonal matrix,
O ·OT = OT ·O = 1, whose columns are con-
structed with the orthogonal eigenvectors of G,
namely O = [v1,v2, . . . ,vN ]. Accordingly,

G = O · γ1 · OT , (21)

which means that G can be decomposed into a
multiplication of orthogonal matrices. By using the
spectral form of Eq. (21), the Laplacian G can be
calculated from

G =
N∑

i=1

vi · γi · vT
i . (22)

Any other Laplacian, G′, can be constructed by
using the set of eigenvalues γ, viz.

G′ =
N∑

i=1

v′
i · γi · v′T

i . (23)

Of course, in order for the active network that is
constructed using G′ to present the synchroniza-
tion manifold x1 = x2 = x3 = . . . ,= xn, the
vector v′

1, with N elements, is given by v′T
1 =

1√
N

[1, 1, 1, 1, . . . , 1], and the other vectors are found
by choosing arbitrary vectors v′

i which are made
orthogonal using the Gram–Schmidt technique.

2Systems of bidirectional equal couplings can be considered as models of electrical gap junctions, a coupling that allows
bidirectional flowing of information in neural networks.
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Sterbová, K. [2001] “Synchronization and information
flow in EEGs of epileptic patients,” IEEE Engin. Med.
Biol. 20, 65–71.

Pareti, G. & Palma, A. [2004] “Does the brain oscil-
late? The dispute on neuronal synchronization,” Neu-
rol. Sci. 25, 41–47.

Pesin, Y. B. [1977] “Characteristic Lyapunov exponents
and smooth ergodic theory,” Russian Math. Surv. 32,
55–114.

Pereira, T., Baptista, M. S. & Kürths, J. [2007a] “Gen-
eral framework for phase synchronization through
localized maps,” Phys. Rev. E 75, 026216-1–
026216-12.

Pereira, T., Baptista, M. S. & Kürths, J. [2007b] “Aver-
age period and phase of chaotic oscillators,” Phys.
Lett. A 362, 159–165.

Pikovsky, A., Rosenblum, M. & Kürths, J. [2003]
Synchronization a Universal Concept in Nonlinear
Sciences (Cambridge, London).

1230008-24

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

2.
22

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 D
E

 S
A

O
 P

A
U

L
O

 o
n 

04
/2

2/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



March 12, 2012 15:58 WSPC/S0218-1274 1230008

Active Networks that Maximize the Amount of Information Transmission

San Liang, X. & Kleeman, R. [2005] “Information trans-
fer between dynamical systems components,” Phys.
Rev. Lett. 95, 244101-1–244101-4.

Schreiber, T. [2000] “Measuring information transfer,”
Phys. Rev. Lett. 85, 461–464.

Shannon, C. E. & Weaver, W. [1949] The Mathematical
Theory of Communication (The University of Illinois
Press).

Smith, V. A., Yu, J., Smulders, T. V., Hartemink, A. J. &
Jarvis, E. D. [2006] “Computation inference of neu-
ral information flow networks,” PLoS Comput Bio. 2,
e161.
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