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Positive Lyapunov exponents measure the asymptotic exponential divergence of nearby trajectories of a
dynamical system. Not only they quantify how chaotic a dynamical system is, but since their sum is
an upper bound for the rate of information production, they also provide a convenient way to quantify
the complexity of a dynamical network. We conjecture based on numerical evidences that for a large
class of dynamical networks composed by equal nodes, the sum of the positive Lyapunov exponents
is bounded by the sum of all the positive Lyapunov exponents of both the synchronization manifold
and its transversal directions, the last quantity being in principle easier to compute than the latter. As
applications of our conjecture we: (i) show that a dynamical network composed of equal nodes and
whose nodes are fully linearly connected produces more information than similar networks but whose
nodes are connected with any other possible connecting topology; (ii) show how one can calculate upper
bounds for the information production of realistic networks whose nodes have parameter mismatches,
randomly chosen; (iii) discuss how to predict the behavior of a large dynamical network by knowing the
information provided by a system composed of only two coupled nodes.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The relation between topology (way nodes are connected) and
behavior in a dynamical network, networks composed by nodes
described by some deterministic dynamics whose equations of mo-
tion are known, is a fundamental question whose answer may
help understand the collective behavior [1] of a variety of com-
plex systems ranging from particle-like chemical waves [2], light
propagation in dielectric structures [3], neural networks [4] and
metabolic networks [5].

The work of Kuramoto [6] and the works of Pecora and collab-
orators [7,8] laid the foundations of a theoretical framework for
studying the relation between topology and behavior in dynamical
networks. In particular, the latter opened up a new way to study
the onset of complete synchronization in dynamical networks [9–
11] composed of equal node dynamics.

At the present moment, it is important to understand from a
theoretical perspective the relation between connecting topology
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and behavior in dynamical networks whose nodes are not only
far away from complete synchronization (desynchronous) but also
nodes that interact among themselves simultaneously by linear
and non-linear means.

In order to understand this relationship between connecting
topology and behavior, we first quantify behavior of a chaotic net-
work by the sum of all the positive Lyapunov exponents of the
network, a quantity that is related to the amount of information
produced by the network. Then, we show how one can calculate
upper or lower bounds for that sum, in terms of exponents that
are functions of the connecting topology of the network.

Information is an important concept [12]. It measures how
much uncertainty one has about an event before it happens and
it is therefore a measure of how complex a system is. Measuring
the information produced by a chaotic systems, i.e. its Shannon’s
entropy, is extremely difficult because one has to calculate an inte-
gral of the probabilities of the trajectory along a chaotic set that
is fractal. But, for chaotic systems that have absolutely contin-
uous conditional measures, one can calculate Shannon’s entropy
per unit of time, a quantity known as Kolmogorov–Sinai (KS) en-
tropy [13], by summing all the positive Lyapunov exponents [14].
A system that has absolutely continuous conditional measures is
a system whose trajectory continuously distributes along unstable
directions. These systems form a large class of well-known (non-
uniformly hyperbolic) systems [15]: the Hénon family; Hénon-like
attractor arising from Homoclinic bifurcations; strange attractors
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arising from Hopf bifurcations (e.g. Rössler oscillator); some classes
of mechanical models with periodic forcing.

We are not aware of any rigorous result proving the equiva-
lence of the KS entropy and the sum of Lyapunov exponent for the
Hindmarsh–Rose neural model neither to a network constructed
with it, as the networks considered in this work. But the chaotic
attractors arising in this neuron model are similar to the ones
appearing from Homoclinic bifurcations. Additionally, for two cou-
pled neurons, we have numerically shown that a lower bound
estimation of the KS entropy is indeed close to the sum of all the
positive Lyapunov exponents. Despite the lack of a rigorous proof,
we will assume that the results in Refs. [14,15] apply in here in
the sense that the sum of the positive Lyapunov exponents pro-
vide a good estimation for the KS entropy and therefore this sum
is a convenient way to quantify how complex a network is.3

Our main result, written in terms of a conjecture, states that
we can predict whether the sum of all the positive Lyapunov ex-
ponents of a large dynamical network is larger or smaller than a
given value that can be analytically or semi-analytically calculated.
And therefore, even before simulating a large dynamical network,
we can estimate how much information such a network can pro-
duce. More rigorously, we conjecture that an UPPER (or LOWER)
bound for the sum of the Lyapunov exponents of a dynamical net-
work with some special properties4 and an arbitrary size, formed
by nodes possessing equal dynamics, can be analytically calculated
by only using information coming from the behavior of two cou-
pled nodes.

It is often considered that the complexity of a network can be
quantified by typical characteristics as the average degree, the net-
work’s connecting topology, the minimal and maximal degree, the
average or minimal path length connecting two nodes, and oth-
ers. But these characteristics are a measure of the structure of the
network and not of the behavior of it. In this work, at least for
the class of networks considered here, we can state that these dy-
namical networks behave in only two ways, regardless the many
characteristics that quantify the network’s structure: the behaviors
UPPER and LOWER. In other words, if nodes of a dynamical net-
work interact by a coupling function that induces a LOWER (or
UPPER) character, this character will not be modified by the use of
other connecting topologies or by increasing the number of nodes
of the network, as long as the nodes possess equal dynamics.

3 According to the Ruelle formula, for ergodic differentiable systems on compact
spaces, the Kolmogorov–Sinai entropy is bounded above by the sum of the posi-
tive Lyapunov exponents of the system. If the systems admits an SRB measure, then
the Kolmogorov–Sinai entropy is exactly equal to the sum of the positive Lyapunov
exponents of the system [16,15]. For the networks here considered formed by dissi-
pative systems that possess an attractor whose measure is completely supported by
an unstable manifold, such an equality should be satisfied. Therefore, a bound for∑

λ+
m implies a bound for HKS . In any case, if it is not certain that such an equal-

ity holds, notice that the sum of the positive Lyapunov exponents will be always a
measure of entropy production per unit time, since it measures the ratio with which
partitions should be created in order to define proper states in a dynamical system.
So, it is irrelevant to our conjecture whether the sum of the positive Lyapunov ex-
ponents represents the KS entropy. Notice that for the class of dynamical systems as
the here considered networks, Ruelle [20] has proved that HKS � ∑

λ+
m , and there-

fore, if the sum of the positive conditional Lyapunov exponents, denoted by ΛC , is
an upper bound for

∑
λ+

m , i.e., ΛC � ∑
λ+

m , then, it implies that ΛC � HKS since
it is always true that HKS � ∑

λ+
m . The conditional exponents are the Lyapunov

exponents of the synchronization manifold and the Lyapunov exponents along the
directions transversal to the Lyapunov exponent.

4 We consider networks of nodes possessing equal dynamics connected simulta-
neously by linear and non-linear means. The connecting Laplacian matrix that de-
scribes the topology under which the nodes are connected linearly and non-linearly
are denoted by G and C , respectively. The strengths of the linear and non-linear
couplings are σ and g respectively. If the nodes in the network are connected by
only linear couplings (g = 0), G can be an arbitrary Laplacian matrix. If nodes are
simultaneously connected by linear and non-linear couplings then G and C must
commute and every node must receive the same number k of non-linear connec-
tions coming from other nodes.
To justify our conjecture, we use dynamical networks of linear
and non-linear maps coupled by linear terms, and neural networks
of highly non-linear neurons (Hindmarsh–Rose (HR) neurons [17])
connected by both linear (electrical synapses) and non-linear cou-
plings (chemical synapses).

As applications of our conjecture, we show in Section 9.1 how
one can calculate an upper bound for the Kolmogorov–Sinai en-
tropy of a network with equal nodes and whose nodes are fully
connected. Then, we show analytically (with numerical verifica-
tion) that the maximal value of this upper bound (varying the
linear coupling strength) is larger than the maximal value of the
Kolmogorov–Sinai entropy of UPPER networks whose nodes are
linearly connected with any other connecting topology. In Sec-
tion 9.2 we show that an upper bound for the Kolmogorov–Sinai
entropy of an UPPER network with equal nodes is larger than this
entropy for an equivalent UPPER network (same connecting topol-
ogy and number of nodes) but whose nodes have parameter mis-
matches. Therefore, even though networks with equal nodes might
not be realistic, their entropy production is an upper bound for the
entropy production of more realistic networks. We finally discuss
in Section 9.3 how our conjecture can be used to predict whether
a LOWER network formed by nodes that when isolated are chaotic
(periodic) will maintain such a chaotic behavior, then predicting
how complex larger dynamical networks can be.

2. Lyapunov exponents, conditional Lyapunov exponents, and an
introduction to our conjecture

To describe our conjecture, we first need to understand what
we mean by conditional Lyapunov exponents. Imagine two equal
1-dimensional systems, X and Y , coupled in a way such that a syn-
chronization manifold exists. The trajectory of this coupled systems
is represented by a pair of variables (xi, yi), and x0 and y0 are the
initial conditions of systems X and Y , respectively, being that after
T iterations these initial conditions go to the point (xT , yT ).

Since that a synchronization manifold exists, if the initial condi-
tions lie along the synchronization manifold, i.e. x0 = y0, they will
remain there forever under the action of the system, i.e. xT = yT .
Now, calculate the Lyapunov exponents of a trajectory starting with
these equal initial conditions. There are 2 Lyapunov exponents. One
exponent gives the information of how much nearby points ex-
ponentially diverge along the synchronization manifold. The other
exponent gives the information of how much nearby points ex-
ponentially diverge along a direction transversal to the synchro-
nization manifold. Since these Lyapunov exponents were measured
along the synchronization manifold and the direction transversal
to it, we call them conditional exponents. Let us now define the
quantity ΛC as to be the sum of all the positive conditional Lya-
punov exponents (along the synchronization manifold and all its
transversal directions). Why do we use the word “conditional” in
our terminology? Because a trajectory along the synchronization
manifold is a special solution of this coupled system. There can be
many other asymptotic solutions, each one with their basin of at-
traction located outside the synchronization manifold. In Fig. 1, the
dashed line represent this special solution along the synchroniza-
tion manifold.

Now, let us assume (for the sake of clarification) that if the sys-
tem is set with randomly set initial conditions such that x0 �= y0,
after a transient time, the trajectory goes to only one attractor. We
assume the synchronization manifold to be unstable and therefore
trajectories starting with initial conditions close to the synchro-
nization manifold eventually go to this attractor. So, we assume
that the random initial conditions lie in the basin of attraction of
this attractor. So, this initial condition is considered to be a typ-
ical initial condition because it leads the trajectory to a unique
attractor. This attractor is represented in Fig. 1 by the two large



M.S. Baptista et al. / Physics Letters A 375 (2011) 1309–1318 1311
Fig. 1. [Color online.] Illustration of the two most relevant types of solutions we
expect to find in the networks here considered. A synchronous solution whose tra-
jectory is represented by the black dashed line, which lies on the synchronization
manifold, and the desynchronous solution whose trajectory is represented by the
large gray (red online) filled regions. The sum of the positive Lyapunov exponents
of the synchronous solution is denoted by ΛC and the sum of the positive Lyapunov
exponents of the desynchronous solution is denoted by Λ.

filled gray (red online) regions. After reaching this attractor, we
calculate the Lyapunov exponents of a trajectory along this typi-
cal attractor. We represent the sum of all the positive Lyapunov
exponents by Λ. Such a typical attractor represents two coupled
systems that are NOT completely synchronous. Their trajectories
are always different, xi �= x j . Even when such a typical attractor
asymptotically stable exists, the trajectory that remains along the
synchronization manifold is a coexisting solution of the two cou-
pled systems. There are two solutions. One typical desynchronous
(xi �= yi , for all i) and asymptotically stable which produces Λ and
a coexisting synchronous solution (xi = yi , for all i) and unstable
which produces ΛC . The point we want to make is that as long as
a synchronization manifold exists, we have at least two coexisting
solutions.

If the synchronization manifold is stable, initial conditions close
to the synchronization manifold eventually falls on the synchro-
nization manifold and remains there forever. Trajectories for which
xi �= yi for all i might not exist any longer. The only attracting set
might be the synchronization manifold. In that case, complete syn-
chronization is achieved, the Lyapunov exponents of typical initial
conditions are equal to the conditional Lyapunov exponents, and
therefore Λ = ΛC .

Roughly speaking, our conjecture states that if for two (N = 2)
coupled nodes with equal dynamics and given coupling strengths,
the quantity Λ is greater (smaller) than ΛC , then this inequality
remains valid for N > 2 coupled nodes with equal dynamics for
coupling strengths obtained by a proper rescaling.

3. Dynamical networks

Consider a dynamical network formed by N > 0 equal nodes
xi ∈ R

d with d > 2. The network is described by

ẋi = F(xi) + σ

N∑

j=1

Gi jH(x j) − g
N∑

j=1

Ci jS(xi,x j), (1)

where g ∈ R and σ > 0 are the linear and non-linear coupling
strengths among the nodes, respectively. G = {Gi j} is a Laplacian
matrix (

∑
j Gi j = 0) describing the way nodes are linearly coupled,
C = {Ci j} is the adjacent matrix representing the way the nodes
are connected by linear and non-linear functions, and H : R

d → R
d

and S : R
d × R

d → R
d are arbitrary differentiable transformations.

We also assume that G and C commute.
A solution of (1) is called synchronous if x1(t) = · · · = xN(t). To

guarantee the existence of such solutions, we assume that every
node of the network receives the same number k of incoming con-
nections. In other words, we require that

∑
j Ci j = k for any i. It is

easy to see that this condition not only guarantees the existence
of synchronous solution, but also implies that the d-dimensional
linear subspace S = {x1 = x2 = · · · = xN } is invariant. The set S is
called synchronization manifold. Note that a synchronous solution
xi(t) = x(t) for i = 1, . . . , N satisfies the following ordinary differ-
ential equation

ẋ = F (x) − gkS(x,x). (2)

4. Calculation of Lyapunov exponents and of conditional
Lyapunov exponents

The way small perturbations δx1, δx2, . . . , δxN propagate in the
network is described by the variational equations [7] associated
to (1)

δ̇xi = D F (xi)δxi + σ

N∑

j=1

Gi j DH(x j)δx j

+ g
N∑

j=1

Ci j D1S(xi,x j)δxi − g
∑

j �=i

Ci j D2S(xi,x j)δx j, (3)

where D1 S(x, y) and D2 S(x, y) denote the differential of S(x, y)

with respect to x and y, respectively. From (3), we can calculate
the Lyapunov exponents of every solution of (1).

4.1. The Lyapunov exponents and the quantity Λ

To calculate the Lyapunov exponents (LEs), we set the initial
conditions of the nodes to be non-equal and then we calculate the
Lyapunov exponents using the variational equation (3). We assume
that the considered random initial conditions evolve always to the
same asymptotic attractor. In a more precise way, we assume that
the network is ergodic, and so the Lyapunov exponents λ1 � λ2 �
· · · � λNd are constant almost everywhere, and can be obtained by
typical initial conditions. Therefore, Lyapunov exponents measure
how much nearby trajectories exponentially diverge in a typical
asymptotic attractor.

Then,

Λ =
∑

m

λ+
m (4)

where λ+
m represents the m positive LEs.

4.2. The conditional Lyapunov exponents and the quantity ΛC

The Lyapunov exponents of the solutions that lie on the syn-
chronization manifold are called conditional Lyapunov exponents
(CLEs) and they are represented by λ(1) � λ(2) � · · · � λ(Nd) . To
calculate the conditional Lyapunov exponents, we set equal ini-
tial conditions for all the nodes of the network, and use Eq. (3)
to calculate them. Alternatively, we can also calculate the CLEs by
diagonalizing the variational equation in Eq. (3) making it a set
of equations for the eigenmodes as in Eq. (A.3) (see also Ref. [18]).
The variational equations in the eigenmode form preserve the form
even when one considers large networks. And one can use the con-
ditional exponents calculated for two bidirectionally coupled nodes
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in order to calculate the conditional exponents of larger networks.
Usually, the CLEs for two coupled systems must be calculated nu-
merically. Then, the numerically calculated CLEs can be used to
calculate all the CLEs of larger dynamical networks.

The chaotic set lying on the synchronization is not a typical set
when this manifold is unstable, in the sense that initial conditional
arbitrarily close to the synchronization manifold diverge from it.
If the synchronization manifold is stable, initial conditions in the
neighborhood of the manifold are attracted to it.

We assume that the equal initial conditions lying along the syn-
chronization manifold we set for all the nodes is a typical initial
condition. By typical we mean that it provides a set that is unique.
And we expect that other initial conditions taken by chance will
also lead the trajectory to this unique set. A non-typical initial con-
dition is for example (xi, yi) = (0,0). In a more rigorous sense, we
assume that the dynamics restricted to the synchronization mani-
fold S is ergodic. Hence, also the conditional Lyapunov exponents
along synchronous solutions are constant almost everywhere on
S along this manifold. The ergodic invariant measure of (1) and
that of the dynamics restricted to S (not necessarily the same) are
assumed to be unique (singular) and different than a point (non-
atomic).

Then,

ΛC =
∑

m

λ
(m)
+ (5)

where λ
(m)
+ represent the m positive CLEs.

5. Conjecture

Here, we describe our proposed conjecture in a more friendly
way. For a more rigorous presentation of it, one should read Ap-
pendix A.1.

Let H,S, G, C, σ , g, N as in (1) to be the parameters which
define the dynamical network. H represents the function under
which the nodes connect among themselves in a linear fashion,
S the function under which the nodes connect among themselves
in a non-linear fashion, G a Laplacian connecting matrix, C an ad-
jacent connecting matrix, σ the strength of the linear coupling and
g the strength of the non-linear coupling. Finally, N is the number
of nodes.

We say that a network is of the class

• UPPER, if ΛC � Λ;
• LOWER, if ΛC � Λ.

We consider that the UPPER and LOWER property holds for a
properly rescaled coupling strength intervals σ(N, G, C) ∈ [σm(N,

G, C),σ ∗(N, G, C)] and g(N, G, C) ∈ [gm(N, G, C), g∗(N, G, C)].

Conjecture. The LOWER or UPPER character of a dynamical network as
the one described by Eq. (1) is independent of the number of nodes for a
properly rescaled coupling strength interval.

In simple words, this conjecture states that as long as one
preserves the coupling functions H,S under which nodes connect
among themselves, there will be coupling strengths σ , g for which
the LOWER or UPPER character of a dynamical network will be
preserved, regardless of the number of nodes N .

6. Defining the coupling strength intervals

For simplicity in the notation, we omit in the representation of
the constants σm, σ ∗ and gm, g∗ the reference to their dependence
on G, C .
Our conjecture states that whenever there is a network with
N1 nodes with a structure defined by H,S, G, C and this network
has an UPPER (or LOWER) character for the coupling strength in-
tervals [σm(N1),σ

∗(N1)] and [gm(N1), g∗(N1)] then if a network
with N2 nodes is constructed preserving the coupling functions
H,S then there exists coupling strength intervals [σm(N2),σ

∗(N2)]
and [gm(N2), g∗(N2)] for which the network behaves with the
same UPPER (or LOWER) character.

To make this conjecture more practical, we make in the follow-
ing some assumptions.

The values of the constants σm(N),σ ∗(N) and gm(N), g∗(N) are
such that either |σm(N)/gm(N)| � 1 or |σm(N)/gm(N)| � 1 and
|σ ∗(N)/g∗(N)| � 1 or |σ ∗(N)/g∗(N)| � 1. The reason is because
for such conditions, the values for these constants for a network
with N2 > 2 nodes can be easily calculated from the values of
these constants from the reference network.

The network with N1 nodes is regarded to be the reference net-
work and we consider that N2 > N1. For simplicity, we further
consider that N1 = 2. In addition, to make our analysis simpler, we
consider in our numerical simulations a constant gm(N) = g∗(N),
and we choose either |σm(N)/gm(N)| � 1 or |σm(N)/gm(N)| � 1.
So, we make the non-linear coupling strength constant.

Then, we choose the constant σ ∗(N) such that its value is a
little bigger than the smallest coupling values for which complete
synchronization is reached and when Λ = ΛC . However, other in-
tervals could be considered. The reason again is that the linear
coupling strength, σ ∗(N), for which complete synchronization ap-
pears in a network with N nodes can be analytical calculated from
the linear coupling strength, σ ∗(N = 2), for which complete syn-
chronization appears in a network with 2 nodes by using

σ(N) = 2σ(N = 2)

|γ2(N)| , (6)

g(N) = g(N = 2)

k
(7)

where γ2 is the second largest eigenvalue of G , and k is the num-
ber of incoming connections of each node of the network.

Let us give an example of how we use Eq. (6). Having de-
fined that two mutually linearly coupled systems (so, g = 0)
have a LOWER character for the linear coupling strength interval
[σm(N = 2),σ ∗(N = 2)], then we construct a network using the
same linear coupling function composed of N nodes, but consid-
ering now the linear coupling strength interval [σm(N),σ ∗(N)]
calculated using Eq. (6). According to our conjecture, such a net-
work will have a LOWER character.

For a more detailed analysis of how we derive Eqs. (6) and
(7), one should read Appendix A.2. In Ref. [18], we show that
these equations are valid even when |σm(N)/gm(N)| ≈ 1 and
|σ ∗(N)/g∗(N)| ≈ 1.

7. Networks of coupled maps

Here, we consider only linear couplings. Then g = gm = 0. We
also consider that the minimal linear coupling strength is σm = 0.

For general networks (discrete or continuous descriptions)
whose nodes are completely synchronous, one always have that
Λ = ΛC , a non-generic case for which our conjecture can be
proved.

For networks of coupled maps, there is another trivial ex-
ample when Λ = ΛC . That happens for networks whose Jaco-
bian is constant as networks formed by linear maps of the type
x(i)

n+1 = αx(i)
n +2σ

∑N
j=1 Gi j x

( j)
n (mod 1) and when there exists com-

plete synchronization, and the attractor lays on the synchroniza-
tion manifold. These results concern arbitrary connecting Laplacian
matrices Gi j , for example, they would apply for map lattice with a
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Fig. 2. Results for the network in Eq. (8), for ρ = 0.5. For (A) and (C), N = 2, and
for (B) and (D), N = 16. An inhibitory (UPPER) network is shown in (A) and (B), for
s = −1, and an excitable (LOWER) network is shown in (C) and (D), for s = 1. The
horizontal axis in (B) and (D) were rescaled by σ ′ = σ ∗ |γ2(N = 16)|/2, so that one
can compare (B) and (D) with (A) and (C). |γ2(N = 16)| = 4.1542.

coupling whose strength decreases with the distance as a power-
law [19].

Now, imagine the following network

x(i)
n+1 = 2x(i)

n + sρx(i)
n

2 + 2σ

N∑

j=1

Gi j x
( j)
n (mod 1) (8)

with ρ � 0 and s = ±1. The synchronization manifold is defined
by x(1)

n = x(2)
n = · · · = x(N)

n , and in an all-to-all connecting topology,
the Lyapunov exponent of the synchronization manifold can be cal-
culated by λ(1) = ln (2) + 1/t

∑
n ln |1 + sρxn|, with n = (1, . . . , t),

and the others N − 1 equal exponents associated to the transver-
sal directions by λ(i) = ln (2) + 1/t

∑
n ln |1 + sρxn − 2σ |, for i � 2.

In Fig. 2, we show the values of Λ and ΛC as we vary σ , for
ρ = 0.5. In (A) and (C), we consider N = 2 (all-to-all topology), and
in (B) and (D) we consider a random networks formed by N = 16
nodes. The coupling strength interval used for two coupled nodes
was rescaled to the proper coupling strength interval for the larger
random network, using in the denominator of Eq. (6) the value of
|γ2| = 4.1542, relative to the second largest eigenvalue (in absolute
value) of the random network. One can check that if two coupled
nodes have an UPPER [LOWER] character for a given coupling in-
terval as can be seen in Fig. 2(A) [in Fig. 2(C)], larger networks will
behave in the same UPPER [LOWER] character as can be seen in
Fig. 2(B) [in Fig. 2(D)].

The conjecture describes a relationship between the conditional
exponents and the Lyapunov exponents. To see that, notice that,
typically for the UPPER networks of linearly connected maps, we
have λ1 ≈ λ(1) , a consequence of the fact that the largest Lyapunov
exponent can be calculated using the same directions as the ones
along the synchronization manifold. Thus, using our conjecture, if
the network is of the UPPER type, λ1 + λ2 � λ(1) + λ(2) , which
provides λ2 � λ(2) . Otherwise, if the network is of the LOWER
type, λ2 � λ(2) . That can be checked in Figs. 2(A)–(C). Since the
approaching of the transversal conditional exponents to negative
values are associated with the stabilization of a certain oscillation
mode, close to a coupling strength for which a transversal con-
ditional exponent approaches zero, there will also be a Lyapunov
exponent which approaches zero, meaning that some oscillation in
the attractor becomes stable.

8. Networks of Hindmarsh–Rose neurons

Let us illustrate our conjecture in networks composed of N
coupled Hindmarsh–Rose neurons [17] electrically and chemically
coupled5:

ẋi = yi + 3x2
i − x3

i − zi + Ii − g
N∑

j=1

Ci j S(xi, x j) + σ

N∑

j=1

Gi j x j,

ẏi = 1 − 5x2
i − yi, żi = −rzi + 4r(xi + 1.6). (9)

The parameter r modulates the slow dynamics and is set equal
to 0.005, such that each neuron is chaotic. The synaptic chem-
ical coupling is modeled by S(xi, x j) = (xi − V syn)Γ (x j) where
Γ (x j) = 1

1+e−θ(x j−Θsyn) with Θsyn = −0.25, θ = 10 and V syn = 2.0.

σ G ji is the strength of the electrical coupling between the neu-
rons, and Ii = 3.25. In order to simulate the neuron network and to
calculate the Lyapunov exponents through Eq. (A.2), we use for the
node i the initial conditions xi = −1.3078 +ωi , yi = −7.3218 +ωi ,
and zi = 3.3530 + ωi , where ωi is a uniform random number
within [0,0.02]. To calculate the conditional exponents λ(i) , we use
in Eq. (A.3) the initial conditions, x = −1.3078, y = −7.3218, and
z = 3.3530, but other set of typical equal initial conditions can be
used.6

We study three types of neural networks:

Case (i): g < 0 [Figs. 3(A)–(C)]. The coupling (synapses) is said
to be of the inhibitory type, since (xi − V syn) < 0 and the nodes j
contribute negatively in the equations for the first derivative of xi .
In other words, the post-synaptic neuron (xi ) is forced to synchro-
nize its rhythm to the rhythm of the pre-synaptic ones (x j).

Case (ii): g = 0 [Figs. 3(D)–(F)]. The network has nodes coupled
to other nodes only electrically. From the biological point of view,
neurons only make electrical connections with their nearest neigh-
bors. Here, we also consider that neurons can make long-range
electrical couplings, and so neurons can connect electrically with
other non-neighbor nodes. Since σ � 0, this coupling contributes
effectively negatively to the first derivative of xi , which results in
an inhibitory effect to the oscillatory motion of the neuron xi .

Case (iii): g > 0 [Figs. 3(G)–(I)]. The coupling (synapses) is said
to be of the excitatory type, since the nodes j contribute posi-

5 It is interesting to observe here that this widely employed synaptic chemi-
cal coupling function can be written as Γ (x j) = 1 − F (x j), with F (x j) = 1/(1 +
exp [θ(x j − Θsyn)]). In this way, one may interpret the term F (x j) as a Fermi dis-
tribution with 1/θ acting as a temperature and Θ as the chemical potential. Such
a distribution is a commonality in quantum statistics of Fermion particles obeying
the exclusion principal: no more than one particle (here a neuron) can occupy the
same state.

6 Our conjecture applies to networks for which for every chaotic attractor that
possesses a basin of attraction with a positive measure there exists also an unsta-
ble chaotic saddle (the solution lying on the synchronization manifold) associated
to this chaotic attractor. In the case there exists multiple chaotic attractors, the cou-
pling strengths σ ∗(N) and g∗(N) (as well as σm(N) and gm(N)) would be a function
of the chosen basin of attraction. The requirement we make is that any initial condi-
tion belonging to an open neighborhood around the unstable chaotic saddle goes to
only one chaotic attractor. These initial conditions are regarded as the typical ones.
Therefore, in our simulations we consider initial conditions that are small pertur-
bations around the synchronization manifold. Nevertheless, most of the attractors
obtained are completely out of synchrony. The identification of possible many co-
existing attractors is a technical matter. In a very general situation, there will be
hopefully only a few coexisting attractors and one can clearly identify the functions
σ ∗(N) and g∗(N) (as well as σm(N) and gm(N)).
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Fig. 3. The values of Λ and ΛC for neural networks described by Eq. (9) of nodes connected in an all-to-all topology. In (A), (D), and (G), N = 2. In (B), (E), and (H), N = 4.
In (C), (F), (I), N = 8. Results for networks with an UPPER character are shown in (A)–(F), and for networks with a LOWER character are shown in (G)–(I).
tively in the equations for the first derivative of xi . For such a case,
the post-synaptic neuron (xi ) is forced to opposite the pre-synaptic
ones (x j). The way we define excitability in this work is different
from the realistic biological way, where excitability is defined in
terms of the parameter V syn = −2.0. But the results presented here
are similar to the results obtained for excitatory networks whose
neurons have a biologically plausible excitatory synapse. One can
check that in Ref. [18].

In Fig. 3, we show the values of Λ and ΛC for the three types
of neural networks being considered, Case (i) in Figs. 3(A)–(C),
Case (ii) in Figs. 3(D)–(F), and Case (iii) in Figs. 3(G)–(I). Net-
works whose results are represented in Figs. 3(A)–(C) and (G)–(I)
are constructed by neurons connected both electrically (σ > 0)
and chemically in the all-to-all topology, while networks whose
results are represented in Figs. 3(D)–(F) are constructed by neu-
rons connected only electrically (σ > 0 and g = 0) in the all-to-all
topology.

In (A) [Case (i)], for N = 2 and g = −0.01, Λ � ΛC , for σ =
[0.1,0.7]. So, σm(N = 2) = 0.1 which leads to |σm(N = 2)/gm(N =
2)| � 1, as we wish. From our conjecture, for larger networks as
the ones shown in Figs. 3(B) [N = 4] and 3(C) [N = 8], we must
have Λ � ΛC , for the rescaled coupling interval. From Eqs. (6)
and (7), we have that for the network with N = 4 [Fig. 3(B)], the
rescaled coupling strength interval should be σ = [0.1/2,0.7/2]
and g = −0.01/3, and for the network with N = 8 [Fig. 3(C)], the
rescaled coupling strength interval should be σ = [0.1/4,0.7/4]
and g = −0.01/7. In fact, as one sees in Figs. 3(B)–(C), these net-
works have the same UPPER character as the network with N = 2,
for the considered coupling strength intervals.

In (D) [Case (ii)], for N = 2 and g = 0, Λ � ΛC for σ = [0,0.6].
So, gm(N = 2) = 0 and consequently σm(N = 2) = 0. From our
conjecture, for larger networks as the ones shown in Figs. 3(E)
[N = 4] and 3(F) [N = 8], we must have Λ � ΛC for the rescaled
coupling interval. From Eqs. (6) and (7), we have that for N = 4
[Fig. 3(E)], the rescaled coupling interval should be σ = [0,0.6/2]
and for N = 8 [Fig. 3(F)], the rescaled coupling interval should be
σ = [0,0.6/4]. In fact, as one sees in Figs. 3(E)–(F), these networks
have the same UPPER character of the network with N = 2.

Finally, In (G) [Case (iii)], for N = 2 and g = 10, Λ � ΛC for
σ = [0.01,1]. So, |gm(N = 2)/σm(N = 2)| � 1 as we wish. From
our conjecture, for larger networks, as the ones shown in Figs. 3(H)
[N = 4] and 3(I) [N = 8], we must have Λ � ΛC for the rescaled
coupling interval. From Eqs. (6) and (7), and N = 4 [Fig. 3(H)],
the rescaled coupling interval should be σ = [0.01/2,1/2] and
g = 10/3, and for N = 8 [Fig. 3(I)], the rescaled coupling inter-
val should be σ = [0.01/4,1/4] and g = 10/7. In fact, as one see
in Figs. 3(G)–(I), these networks have the same LOWER character
of the network with N = 2.

An inhibitory chemical coupling inhibits the nodes of the net-
work, which means that such a coupling promotes an increase
in the level of synchronization. On the other hand, an excitatory
chemical coupling excites the nodes, which means that such a cou-
pling promotes an increase in the level of desynchrony. We have
previously shown in Figs. 3(A)–(C) that an inhibitory network (as
usually defined in terms of the chemical coupling) has the UPPER
characteristic and in Figs. 3(G)–(I) that an excitatory network (as
usually defined in terms of the chemical coupling) has the LOWER
characteristic.

Had we considered that the neurons were connected exclusively
by non-linear (chemical) means (σ = 0), then it is to be expected
that inhibitory networks would present an UPPER character and
excitatory networks would present a LOWER character.

9. Application of our conjecture to predict the chaotic behavior
of large networks

In the following, we discuss how our conjecture can be used to
make general statements about dynamical networks.

9.1. Calculating an upper bound for the Kolmogorov–Sinai entropy

In this subsection we will show that a dynamical network
whose N nodes are linearly connected in an all-to-all fashion pro-
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duces more information (Kolmogorov–Sinai entropy) than similar
networks (same H,S,N), but with any other possible connecting
topologies.

Consider the UPPER networks (ΛC � Λ) formed by neurons
connected only electrically (g = 0). For such cases, ΛC (N) is an
upper bound for the Kolmogorov–Sinai entropy, denoted by HKS

(see footnote 3), since HKS � Λ.
Networks formed by nodes connected in an all-to-all topol-

ogy produce Laplacian matrices whose eigenvalues are γ1 = 0, and
γi = −N , for i = 2, . . . , N . From Eq. (A.4) one can conclude that
max [ΛC (N)] for the considered coupling strengths of a network
with the all-to-all topology, is larger or equal to max [ΛC (N)] for
any other connecting topology.

To understand the reason we need to turn into Eq. (A.4) that
allow us to calculate the CLEs of larger networks from the CLEs of
two coupled nodes. Assume that the maximal value of λ(2) for two
coupled neurons happens when the coupling strength is σ̃ (N =
2). Thus, from Eq. (A.4), the maximal value of the i-th CLE, λ(i) ,
happens for when

σ̃ (N) = 2σ̃ (N = 2)

|γi(N)| .

But, since that for the all-to-all topology, γi = −N , then all CLEs
λ(i) for i � 2 will happen for the same coupling strength σ̃ (N). The
quantity ΛC is calculated for a particular coupling strength. When
we calculate ΛC for σ̃ (N), we obtain that ΛC is a sum of maxi-
mal values for λ(i) . As a consequence, ΛC is the maximal possible
value one can ever have, considering all other possible topologies.
For other topologies, γi typically differ and as a consequence for a
given coupling strength some λ(i) might be maximal, others might
be smaller than this maximal value, leading to a smaller ΛC .

So, we can define the network capacity, c(N), as

c(N) = max
[
ΛC (N)

]
(10)

calculated for the all-to-all topology (and the considered coupling
intervals).

Since ΛC (N) � Λ(N) (as well as ΛC (L) � HKS(N) [20]) for
UPPER networks, we conclude that for these networks not only

c(N) � max
[
Λ(N)

]
(11)

but also

c(N) � max
[

HKS(N)
]

(12)

where the max of Λ(N) in taken considering “any” possible
topologies (described in Fig. 4) and the considered coupling in-
tervals.

The value of c(N) for neural networks electrically connected
can be calculated by max (λ(1)) + (N − 1)max (λ2). Notice that
since λ(1) is a constant value for all σ (it does not depend on it),
then max (λ(1)) happens for the same coupling strength for which
max (λ(2)) is found, which leads to

c(N) ∼= 0.01362 + 0.1013(N − 1) bits/(time unit). (13)

To numerically verify Eq. (11), we do simulations considering
networks as the ones represented in Fig. 4, (with 10 � N � 40),
excluding the nearest neighbor connecting topology (Fig. 4(A)) and
the all-to-all topology (Fig. 4(D)). We obtain that max [Λ(N)] ∼=
0.0830 + 0.0230(N − 1) bits/(time unit). Therefore, as expected
c(N) > max [Λ(N)] > HKS .

For a network with the all-to-all topology [as in Fig. 4(D)], for
10 � N � 40, we obtain max [Λ(N)] ∼= 0.158447+0.031537(N −1),
which agrees with Eq. (11), because c(N) � max [Λ(N)], where the
maximum is taken considering the all-to-all topology and varying
the coupling strengths.

Finally, if we construct a network with nodes connecting to
their nearest neighbors forming a closed ring [as in Fig. 4(A)], we
Fig. 4. Representation of a few network topologies with 8 neurons, considered in
this work. The filled balls represent neurons and the lines indicate an electric bidi-
rectional coupling. In (A) the neurons are only coupled with its nearest neighbors,
forming a ring. From (B) to (D) it is added to the network long-range bidirectional
connections, The average number of connections that each neuron receives (net-
work degree), ω, is ω = 2, in (A), ω = 3, in (B), ω = 5, in (C), and ω = 7, in (D).
In a network with N neurons, long-range connections are introduced in the initial
ring by connecting each neuron to its N/2-th (B) neighbors, then to its (N/2−1)-th
neighbors (C), then to its (N/2 − l)-th neighbors, till each neuron is connected to its
second neighbors, when the network has the all-to-all coupling topology.

find max [Λ(N)] ∼= 0.197125 + 0.034865(N − 1) bits/(time unit).
Eq. (11) is once again verified.

Thus, c(N) for linearly (electrically) connected networks, does
not depend on the network topology. That is not the case for
chemically connected neural networks, for which c(N) might be
achieved for different topologies, since the curves for λ(1) and λ(i)

with respect to the coupling strength σ achieve their maximal val-
ues for different values of σ .

9.2. An upper bound for the Kolmogorov–Sinai entropy in networks
with non-equal nodes

It is interesting to investigate whether in an UPPER network the
quantity ΛC remains as an upper bound for the Kolmogorov–Sinai
entropy of a dynamical network with nodes that have parameter
mismatches, a situation to be expected in physical networks.

In order to understand that, we consider networks composed
by N =[10,20,30] neurons connected in an all-to-all topology, and
set the parameter Ii = 3.2 + ηξ , where ξ is a random number
uniformly distributed between 0 and 1 and η represents the am-
plitude with which the parameter Ii is randomly varied. Then,
we vary the linear coupling strengths within an interval were
max [Λ(N)] is found. This interval is defined by σ = [0.001 ∗ 2/N,

0.4 ∗ 2/N], being that complete synchronization between N mutu-
ally coupled neurons is achieved for σ � 2 ∗ 0.4/N .

In Fig. 5, we show the value of Λ as a function of the rescaled
coupling strength Nσ

2 . From (A) to (C) we show results concerning
networks with N = 10, N = 20, and N = 30 nodes, respectively.
The different curves represent results from different noise am-
plitudes η considered when generating the parameter values of
each neuron in the network. Filled circles represent η = 0, empty
squares η = 0.2, stars η = 0.4, and pluses η = 0.6.

From this figure, we notice that as the neurons are set with
larger parameter mismatches (larger η), for a large interval of the
coupling amplitude σ , the value of Λ as well as the maximal value
of it decrease. In larger networks (larger N), for a large interval
of the coupling strength σ , the difference between Λ(N, η = 0)

and Λ(N, η > 0) is larger than this difference in smaller net-
works. This effect is a consequence of the fact that as the num-
ber of nodes increases, the effect of the different nodes on the
value of Λ is amplified. Since for UPPER networks we have that
ΛC (N, η = 0) � Λ(N, η = 0) and as shown numerically we have
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Fig. 5. We show the value of Λ as a function of the rescaled coupling strength Nσ
2 .

From (A) to (C) we show results concerning networks with N =[10,20,30]. Filled
circles represent η = 0, empty squares η = 0.2, stars η = 0.4, and pluses η = 0.6.

that for most of the coupling strengths Λ(N, η = 0) > Λ(N, η > 0)

and for some other parameters Λ(N, η = 0) ∼= Λ(N, η > 0), we
conclude that ΛC (N, η = 0) � Λ(N, η > 0).

Therefore the maximal rate of information produced by a com-
plex network constructed with equal nodes (ΛC (N, η = 0)) is
larger or equal than the rate of information of an equivalent dy-
namical network (same topology and same number of nodes) but
whose nodes have parameter mismatches Λ(N, η > 0).

These results were similarly reproduced in some other net-
works with the connecting topologies represented in Fig. 4.

9.3. Predicting whether a large dynamical network will be chaotic

Further, consider two coupled LOWER-type systems and Λ is
null (positive) for some coupling strength, meaning a periodic be-
havior (meaning chaos). It might be that, for a proper rescaled
coupling strength, as more nodes are added to the network, Λ be-
comes positive, meaning chaos (for sure there will be chaos). We
can also use our conjecture to predict the behavior of a network
constructed with nodes that are either chaotic or periodic, by only
having information about two coupled nodes. Considering only lin-
ear couplings [g = 0, in Eq. (1)]. For σ � ε , the two coupled nodes
have a periodic dynamics, and thus, Λ = 0, but ΛC > 0 (UPPER
character). That implies that as we add more nodes in the net-
work, it might be that after the proper rescaling of the coupling
strength the network becomes chaotic.

10. Conclusions

In conclusion, we have presented arguments to suggest that for
a class of dynamical systems, the sum of all the positive Lyapunov
exponents of a dynamical network is bounded by the sum of all
the positive Lyapunov exponents of the synchronization manifold.
In practical terms, the entropy production of the synchronization
manifold and its transversal directions (ΛC ) of a system of two
coupled equal dynamical systems determines the upper (LOWER
character) or lower (UPPER character) bound for the sum of the
positive Lyapunov exponents of a large network. This fact enables
one to predict the behavior of a large network by using informa-
tion provided by only two coupled nodes.

Our results indicate that the behavior (synchronization and in-
formation) of a dynamical network with nodes possessing equal
dynamics and especial properties see footnote 6 does not strongly
depend on the coupling topology (G and C ) and the size of the
network (N) but rather on the nature of the coupling functions
(S and H).

At first glance, this result seems to be in direct conflict with
what one would expect to find in realistic neural networks, as the
mammalian brain, whose topology is possibly responsible for in-
telligence. But one should have in mind that the here considered
networks are constructed with nodes that possess equal dynamics
being connected using always the same coupling function. In re-
alistic brain networks, the coupling functions largely differ along
different brain areas as well as the coupling strength depends on
time. Therefore, in order for the topology to play an important role
in the behavior of a network one needs to consider networks with
parameter mismatches and/or that possess coupling functions that
change in space and time.

Naturally, the large class of networks for which our conjecture
was constructed are far from being realistic. However, our conjec-
ture can contribute to the understanding of much more complex
dynamical networks. For example, for the UPPER networks, we
have numerically shown in Section 9.2 that the maximal rate of
information produced by a dynamical network constructed with
equal nodes (ΛC (N, η = 0)) is larger or equal than the rate of infor-
mation of an equivalent UPPER dynamical network (same topology
and same number of nodes) but whose nodes have parameter mis-
matches Λ(N, η > 0). This result complements a previous result
from Ref. [21] where we have numerically shown that networks
whose nodes are connected linearly and have mismatches in the
coupling strengths produce less information than networks whose
coupling strengths are equal. Therefore, even though networks
with equal nodes (connected with equal coupling strengths) might
not be realistic, their entropy production is an upper bound for the
entropy production of more realistic networks, if the networks are
of the UPPER class. And inhibitory Hindmarsh–Rose neuron net-
works are of the UPPER class.

Excitability and inhibition is a concept usually used to classify
the way non-linear (chemical) synapses between two neurons are
done. When an inhibitory neuron spikes (the pre-synaptical neu-
ron) a neuron connected to it (the post-synaptical neuron) is pre-
vented to spike. When an excitatory neuron spikes it induces the
post-synaptical neuron to spike. We have shown in this work that
an excitatory network is a LOWER network and an inhibitory net-
work is an UPPER network. Thus, in inhibitory networks, the rate
of information produced by the network cannot be larger than a
value which we can calculate based on the rate of information pro-
duced by two mutually coupled neurons. In other words, for UPPER
networks, the entropy of the attractors cannot be larger than the
entropy of the synchronous set, which therefore imposes a clear
limit in the complex character of these networks. On the hand, for
LOWER networks, our conjecture suggests that such a limit might
be unknown.

As other examples of applications of our conjecture, we show
in Section 9.1 how one can calculate an upper bound for the
Kolmogorov–Sinai entropy of an UPPER network with equal nodes
and whose nodes are fully linearly connected. Then, we show an-
alytically (with numerical verification) that the maximal value of
this upper bound (varying the linear coupling strength) is larger
than the maximal value of the Kolmogorov–Sinai entropy of an
equivalent UPPER network whose nodes are linearly connected
with any other connecting topology. And in Section 9.3 we discuss
how our conjecture can be used to predict whether a LOWER net-
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work formed by nodes that when isolated are chaotic (periodic)
will maintain such a chaotic behavior, then predicting how com-
plex larger dynamical networks can be.

This conjecture might be a consequence of the fact that the
attractors and behaviors that appear in two coupled nodes for a
given coupling strength are similar to the ones that appear for
larger networks, to parameters rescaled according to Eqs. (6) and
(7). In fact, as one can see in the work [22], that is indeed the case
for the coupling strengths for which burst phase synchronization
(BPS) or phase synchronization (PS) appear in networks of electri-
cally coupled HR-neurons.

Acknowledgements

M.S.B. acknowledges the partial financial support of “Fundação
para a Ciência e Tecnologia (FCT), Portugal” through the programs
POCTI and POSI, with Portuguese and European Community struc-
tural funds and financial support from the Northern Research Part-
nership. This work is also supported in part by the CNPq and
FAPESP (M.S.H.). M.S.H. is the Martin Gutzwiller Fellow 2007/2008.

Appendix A

A.1. The conjecture

Let H,S, G, C, σ , g, N as in (1) to be the parameters which
defines the dynamical network. H represents the function under
which the nodes connects among themselves in a linear fashion, S
the function under which the nodes connects among themselves in
a non-linear fashion, G a Laplacian connecting matrix, C an adja-
cent connecting matrix, σ the strength of the linear coupling and
g the strength of the non-linear coupling. Finally, N is the number
of nodes.

Denote by Λ(H,S, G, C, σ , g, N) and ΛC (H,S, G, C, σ , g, N) the
sum of the positive Lyapunov exponents and the sum of the posi-
tive conditional Lyapunov exponents of the network whose struc-
ture is specified by (H,S, G, C), respectively. We say that the cou-
ple (H,S) makes the network to be of the LOWER class if for every
(G, C) there exist four positive constants σm , gm , σ ∗ and g∗ such
that

ΛC (H,S, G, C,σ , g) � Λ(H,S, G, C,σ , g) (A.1)

for all σm � σ � σ ∗ and all gm � g � g∗ . An UPPER class dy-
namical network is defined similarly by reversing the direction of
inequality (A.1).

Conjecture. Given a network with a LOWER (UPPER) character [as de-
fined in (A.1)] specified by (H,S, G, C), and (G, C) with N1 nodes, there
exist coupling strength intervals σ̃m � σ � σ̃ ∗ and g̃m � g � g̃∗ for
which a network specified by (H,S, G̃, C̃) and (G̃, C̃) with N2 nodes has
also a LOWER (UPPER) character.

A.2. Derivation of the coupling strength constants

The variational equation (3) for the synchronous solution can
be written as follows

δẊ = {
I ⊗ DF(x) + σ G ⊗ DH(x) − gC ⊗ D1S(x,x)

− gkC ⊗ D2S(x,x)
}
δX, (A.2)

where δX is the column vector of R
Nd with components δx1, δx2,

. . . , δxN , and ⊗ stands for the Kronecker product of matrices. Since
G and C commute, they can be simultaneously diagonalized. Let
u1, . . . ,uN be their eigenvectors, and denote by γ1, . . . , γN and
γ̃1, . . . , γ̃N the corresponding eigenvalues for G and C , respectively.
We order {γi} so that γ1 = 0. If we write δX(t) = ∑
1�i�N ui ⊗yi(t)

with yi(t) ∈ R
d , and substitute it in (A.2), then a straightforward

computation gives

ẏi = {
DF(x) + σγi DH(x) − gkD1S(x,x) − gγ̃i D2S(x,x)

}
yi .

(A.3)

While Eq. (A.2) describes how perturbations are propagated or
damped along a particular node of the network (xi) Eq. (A.3) de-
scribes how perturbations are propagated along an eigenmode (yi).
While Eq. (A.2) is valid for networks with nodes initially set in
typical initial conditions Eq. (A.3) is only valid for networks with
nodes initially set with equal initial conditions, the assumption
done in order to place Eq. (A.2) in the eigenmode form in Eq. (A.3).

Calculating the Lyapunov exponents from Eq. (3) assuming
equal initial conditions for every node provides the same ex-
ponents than the conditional ones obtained from Eq. (A.3). An
advantage of using Eq. (A.3) for the calculation of the condi-
tional exponents is that while Eq. (A.2) requires the employment
of (Nd × Nd)-dimensional matrices, the conditional exponents by
Eq. (A.3) requires the use of N matrices of dimensionality d.
A mode i in equation in Eq. (A.3) provides a set of d condi-
tional exponents, denoted by λ

(i)
j , j = 1, . . . ,d. Since we are only

interested in positive exponents, we simplify the notation by mak-
ing λ(i) = ∑d

j=1 λ
(i)
j . So, λ(1) refers to the sum of the positive

conditional Lyapunov exponents of the synchronization manifold
while λ(i) (i � 2) refer to the sum of the positive Lyapunov ex-
ponents of the transversal directions to the synchronization mani-
fold.

From Eq. (A.3) it becomes clear that once the conditional expo-
nents are calculated using two bidirectionally coupled nodes, for
the considered coupling interval, the conditional exponents of the
mode i (λ(i)) for larger networks with arbitrary topology can be
calculated from the exponents for N = 2, by λ(1)(N = 2, σ , g) =
λ(1)(N, σ , g/k) and λ(2)(N = 2, σ , g) = λ(i)(N,2σ/|γi(N)|, g/k).

To understand why, just make in Eq. (A.3) g = 0. The only term
that changes in these equations as one considers networks with
different topologies and sizes is γi(N), the i-th eigenvalue of the
connecting Laplacian matrix G with size N . Denoting γi(N = 2)

and σ(N = 2) to be the i-th eigenvalue of the Laplacian matrix G
and the coupling strength, respectively, for two mutually coupled
nodes then the mode i of Eq. (A.3) for a network with a num-
ber N of nodes will preserve the form of the mode i in Eq. (A.3)
for the network with N = 2 if σ(N) = 2σ(N = 2)/|γi(N)|. For prac-
tical purposes, this relation can be expressed in terms of only the
coupling strengths. Denoting σ̃ as the strength value for the linear
coupling for which λ(2)(N = 2) reaches a given value, then the cou-
pling strengths for which λ(i)(N) reaches the same value is given
by the rescaling [18]

σ̃ (N) = 2σ̃ (N = 2)

|γi(N)| . (A.4)

A similar analysis can be done assuming that σ = 0. Once
that D2S(x,x) � D1S(x,x) in Eq. (A.3), then the only term that
changes in these equations as one considers networks with dif-
ferent topologies and sizes is k(N), the number of connections a
node within a network of N nodes receives from the other nodes.
So, denoting g̃ as the strength values for the non-linear coupling
for which λ(2)(N = 2) reaches a given value, then the coupling
strength for which λ(i)(N) reaches the same value is given by the
rescaling [18]

g̃(N) = g̃(N = 2)

k
.

In this work we consider that Eqs. (6) and (7) remain valid if
either |σ̃ /g̃| � 1 or |g̃/σ̃ | � 1, which means that one can consider
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the linear coupling as a perturbation (|g̃/σ̃ | � 1) or the non-linear
coupling as a perturbation (|σ̃ /g̃| � 1). But, as shown in Ref. [18],
these equations remain approximately valid even when |σ̃ /g̃| � 1
or |g̃/σ̃ | � 1.

Further in this work, the coupling interval is rescaled using as
a reference the second largest conditional exponent λ(2) computed
for the network with N = 2.
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