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We study the effects of spin accumulation (inside reservoirs) on electronic transport with tunneling
and reflections at the gates of a quantum dot. Within the stub model, the calculation focus on the
current-current correlation function for the flux of electrons injected into the quantum dot. The
linear response theory used allows to obtain the noise power in the regime of thermal crossover
as a function of parameters that reveal the spin polarization at the reservoirs. The calculation is
performed employing diagrammatic integration within the universal groups (ensembles of Dyson)
for a non-ideal, non-equilibrium chaotic quantum dot. We show that changes in the spin distribution
determines significant alteration in noise behavior at values of the tunneling rates close to zero, in
the regime of strong reflection at the gates.

PACS numbers: 73.23.-b,73.21.La,05.45.Mt

I. INTRODUCTION

The experimental control of electron transport in
nanostructures may lay the grounds for the develop-
ment of devices for processing quantum information [1–
3]. These devices may rely on the spin degrees of free-
dom, and are thus called spintronics [4]. The control of
the spin is a subtle process which requires the fabrication
of special samples and manipulating them so as to detect
low intensity currents in semiconductors [5–7]. The accu-
mulation of spin, when detected, allows the extraction of
information of great value to the phenomenon of electron
transport [1, 8].

To induce a spin polarization in a material sample
which can be a reservoir of electrons, one creates a popu-
lation of non-equilibrium spins with a finite interval of re-
laxation time. This population can be achieved through
optical or electronic mechanisms. Routinely, the optical
techniques require the injection of circularly polarized
photons in order to transfer their angular momentum
to electrons through a complex sample [8]. The elec-
tronic injection involves the presence of magnetic elec-
trodes connected to a sample, creating spin polarization
in a non-equilibrium regime [3, 4].

Fluctuation properties of a non-equilibrium current in-
dicates that just the average electronic currents are not
enough for a complete description of the full quantum
transport [9]. The accumulation of spin in electronic
reservoirs modifies the fluctuation properties of the non-
equilibrium electronic current. Such a modification fol-
low through a mechanism proposed in [10] which reveals
that noise power presents a asymmetry under reversal of
the current/voltage in the presence of spin accumulation
inside at least one reservoir. On the other hand, perform-
ing direct measurements of the fluctuations in semicon-

ductor quantum dots can be a very hard task, precisely
because the typical currents are of the order of nA and
temperatures on the order of mK, very small indeed. A
experimental procedure found in Ref. [11], and justified
theoretically in [12, 13], is to perform the Full Counting
Statistics (FCS) which consists of counting the numbers
of electrons and their degrees of freedom within a certain
window of time. Real-time measurements can also be
applied to study the spin transport properties on generic
interfaces of heterostructures, according to the results in
[14, 15]. Tunneling rates not only allow to find the con-
ductance, but the shot-noise (width of the conductance
distribution) [11].

FIG. 1: A schematic picture showing a quantum dots coupled
to polarizable reservoirs via several leads with open channels
in the presence of temperature and voltage.
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In the limit of high temperatures, noise provides in-
formation on the thermal fluctuations characteristics of
dissipative systems. On the other hand, experimental
measurements of noise at low temperatures, also known
as shot-noise, use tunneling rate in the non-ideal quan-
tum transport [11], yielding important information about
the discrete process of charge transmission [16]. In meso-
scopic systems both noise sources are present. A rele-
vant parameter to measure the noise in quantum dots is
the asymmetry factor a = (Gi − Gj)/(Gi + Gj), with
Gi ≡ NiΓi and Ni, Γi denoting, respectively, the num-
ber of open channels and the tunneling rate in the lead
i. Therefore, the tunneling rates play a crucial role in
mesoscopic systems and in measures of the noise.

Motivated by these recent advances in the noise mea-
surements [11] and by the asymmetry in current/tension
seen in [10], we propose and study a myriad of possi-
bilities to measure the spin accumulation in reservoirs
through solely non-equilibrium electronic transport. This
study is an alternative to that of active spin polarization
in transport which usually requires the presence of ferro-
magnetic leads [17] and measurents in spin polarization
through spin current is, in principle, much more diffi-
cult than measure tunneling in charge transport. For
this, we consider the role of tunneling rates in the elec-
tronic transport for quantum dots coupled to reservoirs
through normal guides. Considering independent elec-
tron spin distributions of these reservoirs, we show that
the average noise displays new and surprising effects due
to the asymmetry parameter a. There are many theo-
ries for the calculation of electron counting statistics. To
name a few: Non-linear σ models (replica [18], super-
symmetric [19] and Keldysh [20]), quantum circuit the-
ory [21], cascade approach [22], stochastic path integral
technique[23], semi-classical methods based on solving
Boltzmann-Langevin equations[24], etc. In this paper,
we use one more, and proven powerful, method based
on the Random Matrix Theory (RMT). More specifi-
cally, using RMT [9, 25] we study the generalization of
the interesting experimental setup recently proposed in
Ref. [10].

We consider an open QD connected to m reservoirs
labeled by α = 1, . . . ,m through leads with open elec-
tronic channels. The system, schematically represented
in Fig. 1, contains reservoirs with electro-chemical po-
tentials µα = µα↑ +µα↓, where ↑ and ↓ denoting, respec-
tively, the contributions of spins up and down. The reser-
voirs are kept at an arbitrary temperature T in a way that
the system can reach the thermal crossover. The tunnel-
ing rates, Γi, can be controlled through changes in the
gates voltage. We consider non-equilibrium corrections
at the electro-chemical potentials owing to the accumu-
lation of spin. This is denoted by δµα = (µα↑ − µα↓)/2.
Because of the difference nα↑ − nα↓ at the reservoirs,
where nα is the total number of electrons, there is a well
defined direction of the spin polarization at, say, reservoir
α, which we describe by the unit vector mα. We show
that tunneling rates drastically affects the measurements

in spin distribution at reservoirs of QD. We further show
that a great change in the average noise power occurs in
a region of spin accumulation close to where most exper-
iments have performed.

II. SCATTERING THEORY OF QUANTUM

TRANSPORT

In Section A, we will make a brief presentation of the
linear response theory using Landauer-Büttiker scatter-
ing formalism. We follow [10] that verify the asymmetry
current/voltage and present their main results, making
our work self-contained. The theory presented includes
an arbitrary topology and the separation of spin degrees
of freedom. In section B, we present original results for
average noise including the spin accumulation in the pres-
ence of tunneling rates.

A. General Formulation

In the limit of low bias voltages, we construct a
theory of multi-terminal and multi-channel scattering,
generating the Landauer-Büuttiker framework for quan-
tum transport [16]. We start by considering the time-

dependent current Îγ(t) at lead γ, for γ = 1, 2, ...,m, with
m being the number of leads connected to the chaotic
quantum dots. Within the framework of the scattering
theory for quantum transport, the current-current corre-
lation function can be written in the form [16]

〈δÎα(t)δÎβ(0)〉 =
∫

dw

2π
e−iwtSαβ(w), (1)

where δÎα(t) ≡ Îα(t) + 〈Îα(t)〉 is the current fluctuation

around the mean value 〈Îα(t)〉. The Fourier transform of
the current-current correlation function, Eq.(1), namely
Sαβ(w), is the noise, which, in the absence of interaction,
can be written as [10]

Sαβ(w) =
∑

γν

∑

(c1,p)∈γ

∑

(c2,q)∈ν

e2

h

∫

dε Ac1,p;c2,q
γν (α; ε, ε′)

×Ac2,q;c1,p
νγ (β; ε′, ε)

{

fp
γ (ε) [1− f q

ν (ε
′)]

+f q
ν (ε)

[

1− fp
γ (ε

′)
]}

; ε′ ≡ ε+ h̄w. (2)

The matrix Ac1,p;c2,q
γν (α; ε, ε′) ≡ δc1c2δpqδαγδαν −

[S†
αγ(ε)Sαν(ǫ

′)]c1,p;c2,q is the current matrix, where S(ε)
is the scattering matrix, which can depend on the energy
ε and describes the charge transport through the circuit.
Also, fp

γ (ε) = (1 + exp [(ε− µγp)/kBT ])
−1

represents the
Fermi distribution function, related to the thermal reser-
voir connected to the lead α. The sum in Eq.(2) extends
over spin indices p, q = ± polarizable along mγ , open
channels indices c1, c2 ∈ γ and over all leads, including α
and β.
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The scattering matrix S(ε) used to describe the meso-
scopic system is uniformly distributed over the orthogo-
nal ensemble, if the system has both time-reversal and
spin rotation symmetry, over the unitary ensemble, if
only time-reversal symmetry is broken by a intense exter-
nal magnetic field, or over the symplectic ensemble, if the
spin rotation symmetry is broken by a intense spin-orbit
interaction [26].
A particularly interesting limit of the resulting lin-

ear response theory is that at zero frequency, for which
there is a successful model established to treat noise of
a phase-coherent conductor [27]. In this limit, we de-
fine Sαβ = Sαβ(0) and the transport is described in
terms of external fields contained in the symmetries of
the scattering matrices, the energies present in the cor-
responding Fermi distributions in the reservoirs, and on
the open channels in the leads. In the limit of both low
temperatures and voltages, the scattering matrix is uni-
form within an energy windows in the vicinity of Fermi
level, in a form that the scattering matrix is given by
S = S(ε) = S(EF ), ∀ε, with EF denoting the Fermi
energy. From Ref. [27], along with the limits discussed
above, spectral noise of the current-current correlation
function function can be written as [10, 28]

Sαβ = 2kBT
[

δαβ2Nα − Tr
(

1βS
†1αS + 1αS

†1βS
)]

(3)

+
1

4

m
∑

γ,ρ=1

∑

p,q=±

f pqγρ
[

T 00
γαρβ + 2pReT z0

γαρβ + pqT zz
γαρβ

]

;

fpq
γρ ≡

∫

dE
[

fp
γ

(

1− f q
ρ

)

+ f q
ρ

(

1− fp
γ

)]

.

The matrix S has dimension 2M × 2M , with M =
∑m

γ Nγ denoting the total number of open channels in
the leads. The matrix 1α projects states on the trans-
port guide α. We also define

T ab
γαρβ ≡ Tr

[

(1γ ⊗ σa)S†1αS
(

1ρ ⊗ σb
)

S†1βS
]

(4)

where a, b ∈ {0, z}, σz = σ · mρ with σ is the Pauli
vector/matrix and σ0 a identity matrix 2× 2.

B. Non-ideal Mesoscopic Billiards

Now, we present our new results, extending [10] to in-
clude tunneling and reflections. The scattering matrix
incorporates the non-ideal coupling between the ideal-
channels of the leads and the internal modes of the QD.

This coupling describes the tunneling rate Γα ∈ [0, 1] of
the entrance and exit of the electronic modes of lead α
in the QD. In RMT, the tunnel rate is generically re-
ferred to as tunneling barrier. The presence of barriers
imposes a distribution of the scattering matrices within
the Poisson kernel [9, 26, 29, 30] of RMT and integration
in the Haar measure corresponding to extracting non-
analytical results for the averages. Therefore we will use
the diagrammatic method proposed in Ref. [29], to find
the leading term in the semi-classical expansion of the
average noise. Following Refs. [29, 31], the matrix S can
be parameterized by the stub model, being composed by
an average part, R, and a fluctuating part, δS:

S = R+ δS

δS = T [1−RU ]−1UT †.

The matrix U is random orthogonal, unitary or
sympletic, depending on the Dyson ensemble, with
dimensions 2M × 2M . The matrices T and
R are diagonal, 2M × 2M , matrices, given by
T = diag

(

i
√
Γ112N1

, . . . , i
√
Γm12Nm

)

and R =

diag
(

i
√
1− Γ112N1

, . . . , i
√
1− Γm12Nm

)

.

In the limit of many open channels M ≫ 1, we can
expand S in powers of U and perform a diagrammatic
integration, obtaining average moments of the scattering
matrix in the Poisson kernel. According with Eq. (3),
the average noise requires the calculation of the semiclas-
sical expansion of the trace of products of two and four
scattering matrices. We performed the calculation and
verified explicitly that only the ladder diagrams (difu-
sons) contribute to the leading term of the average noise.
The diagrams for the average over trace of the product of
two S matrices can be found in Ref. [29], while the dia-
grams for obtaining the average of four matrices S can be
found in Ref. [31]. We get for a ballistic chaotic quantum
dot connected to multiple terminals the following known
general result:

〈Tr
(

1βS
†1αS

)

〉 = 2δβα [Nβ −Gβ ] + 2
GβGα

GT

. (5)

The average of Eq.(4) is calculated in a generic form for
any ensemble, arbitrary number of leads and different
tunneling rates in each lead. We obtain the following,
new, result valid for the universal ensembles:

〈T ab
γαρβ〉 = 2δab

{

δγαρβ (Nγ − 2Gγ +GγΓγ) + δa0
GγGαGρGβ

G3
T

[

2− Γγ − Γα − Γρ − Γβ +

∑m

i=1 GiΓi

GT

]

(6)

+
GγGα

GT

[δγρβ (1− Γγ) + δa0δαρβ (1− Γα)] +
GρGβ

G
[δγαρ (1− Γρ) + δa0δγαβ (1− Γβ)]
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+
GγGαGβ

G2
T

[

δγρΓγ − δa0
Gρ

Gβ

[δγβ (1− Γγ) + δρβ (1− Γρ)− δαβΓα]− δa0
Gρ

Gα

[δγα (1− Γγ) + δαρ (1− Γρ)]

]}

,

FIG. 2: We depict the behavior of the noise and its first
derivative in the regime of spin accumulation as a function of
tunneling rate Γ in a quantum dot with non-ideal symmetrical
contacts. For ∆ > Φ, We observe that the noise suffers abrupt
changes, enhanced by the finite tunneling rates.

where Gm = NmΓm, GT =
∑m

i=1 Gm and
γ, α, ρ, β = 1, . . . ,m. In unitary or symplectic en-
sembles, we consider the non-colinear spin accumulation
in the direction of the unit vectors mγ e mρ such that
we replace mγ · mρ → δab, where a = z = b. In the
orthogonal case, we should take δa0 → 1 owing to both
spin rotation and time-reversal symmetries. In the case
of absence of spin accumulation, for which the equations
(5) and (6) can be used with a = 0 = b, we recover
the known results of literature [32]. We also recover

the ideal contacts case, Γi = 1, in the presence of spin
accumulation obtained in [10] for the average noise.
Our general result is the main (semiclassical) term of
the average noise and it is valid for three ensembles of
Dyson. Without loss of generality, we focus on unitary
ensemble and study surprising asymmetries due to
tunneling rates. Sample-to-sample measurements can
lead to corrections discussed in ref. [10], which gives rise
to another noise asymmetries, from the T 0z

γαρβ term in

Eq. (3) (zero in average).

III. ELECTRONIC NOISE POWER AND SPIN

ACCUMULATION IN RESERVOIRS

The previous results are general and apply to the case
of many terminals coupled to the QD. In this section,
we analyze the more widely studied case of noise in the
regime of spin accumulation in a ballistic QD coupled to
two leads with non-ideal contacts as the described in fig-
ure 1. We study in details the two terminals case, having
in mind the curious and surprising fact that this con-
figuration presents a clear instance of non-equilibrium
spin accumulation phenomena, quite interesting for di-
rect phenomenology and investigations of most usual ex-
periments on noise. Let us consider a number of open
channels N1 and N2 in the leads are connected to the
reservoirs labeled by 1 and 2, respectively. Without loss
of generality, we assume that the accumulation of spin
occurs only in reservoir 1 so that ∆µ1 = eV + pδµ and
δµ2 = 0 in the Fermi distribution. Substituting the gen-
eral equations (5) and (6) in equation (3), we get the
expression for the two terminals case:

〈S11〉
kBT 〈g〉

=
6G1G2

G2
T

+
G1G2Γ1 (2G2 +G1)

G3
T

+
4G3

2Γ1 + 3G3
1Γ2

G3
T

+ |∆| coth (|∆|)
[

G2
1G2 (2− Γ1)

G3
T

+
2G1G

2
2 (1− Γ1)

G3
T

+
G3

1Γ2

G3
T

]

+

[

|Φ +∆| coth
( |Φ+∆|

2

)

+ |Φ−∆| coth
( |Φ−∆|

2

)][

G1G2

G2
T

+
G3

1 (1− Γ2) +G3
2 (1− Γ1)

G3
T

]

(7)

with 〈g〉 = 2G1G2/GT , Φ = eV/kBT and ∆ = δµ/kBT .
We also show that this equation satisfies the conserva-
tion law Si1 = −Si2, with i = 1, 2, indicating that the
behavior of any Sij is identical.

Before we analyze equation (7), we should first verify
several of its basic limits. We start by considering the
limit kBT ≫ eV, δµ and obtain the universal thermal
noise 〈S11〉 = 4kBT 〈g〉. Another important case which
leads to the shot-noise power is the limit eV ≫ δµ, kBT ,
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through which we find that F = 〈S11〉/2eI where F is
the Fano factor and 2eI is the Poisson noise:

F =
G1G2

G2
T

+
G3

1 (1− Γ2) +G3
2 (1− Γ1)

G3
T

. (8)

From Eq.(8), we can see that the case of symmetric
contacts, G = G1 = G2 and Γ1 = Γ2 = Γ, the Fano factor
simplifies to F = 1/4 × (2 − Γ), under typical ballistic

QD for which F = 1/4 in the case of ideal contacts. It is
also possible to see in Eq. (7) that the noise is non-zero
even when eV → 0 for an arbitrary value of temperature
crossover. The spin accumulation maintains the noise for
arbitrary electrochemical potentials for both shot-noise
power and thermal noise power. The general Eq.(7), in
the case of symmetric contacts simplifies to the following
expression:

〈S11〉
kBT 〈g〉

=
6 + 5Γ

4
+

2− Γ

4

[

|∆| coth (|∆|) + |Φ +∆| coth
( |Φ +∆|

2

)

+ |Φ−∆| coth
( |Φ−∆|

2

)]

. (9)

The behavior of equation (9) is displayed in Figure
(2). In the left figure, we fix Φ at a fixed generic value
and also fix several values of the barriers. We observe
in this figure that the barrier greatly amplify the sig-
nal of 〈S11〉 /kBT 〈g〉. We observe two anomalous char-
acteristics of the first derivative: The first centered at
the inversion point of the spin polarization of the reser-
voir, and the second in the region of saturation at which
Φ = ∆. In these zones drastic changes of the rate of
increase in the noise, encoded in the value of its first
derivative which stabilizes between two plateaus as the
bias voltage decreases. In the right figure, we investigate
the finite value of Γ = 0.5 of the tunneling rate and the
disappearance of one of the plateaus. The elimination of
one of the plateaus of the first derivative indicates that
the tunneling rate has an important role in the study of
the saturation zone as the bias voltage is decreased. It
is one of the important effects of the tunneling rate on
the spin accumulation in the system. Taking the limit
δµ ≫ eV, kBT , we obtain

〈S11〉
〈g〉 =

3

4
(2− Γ) |δµ|, (10)

which can be rewritten in terms of the Fano factor as
〈S11〉/〈g〉 = 3× F × |δµ|.

IV. OPAQUE LIMIT

A particularly interesting regime in experiments in-
volving tunneling rates is called “Opaque Limit”. The
experimental data in real-time traces of Refs. [11, 14, 15]
are basically in this category. The opaque limit is well-
defined in Ref. [33], where analytical calculation using
semiclassical method were performed allowing the ob-
tention of time scales typical of transport phenomena in
ballistic cavities. This regime is defined by taking limits
of Nα → ∞ and Γα → 0 such that Gα be finite. Tak-
ing this limit, the general expression (7) simplifies to the

FIG. 3: We depict the behavior of the noise in the regime
of spin accumulation as a function of the tunneling rate Γ in
a QD with non-ideal contacts, through the parameter a =
(G1 −G2) /GT . Note that for ideal contacts, Γ1 = Γ2 = 1,
the noise is highly asymmetrical with respect to this param-
eter. In the other curves we vary the values of Γ1 and Γ2 till
we reach the opaque limit, Γ1,2 → 0. In this case the noise
becomes symmetrical with respect to a.

following equation

〈S11〉
kBT 〈g〉

=

(

1− a2
)

2
[3 + |∆| coth (|∆|)]

+

(

1 + a2
)

2

[

|Φ+∆| coth
( |Φ +∆|

2

)

+ |Φ−∆| coth
( |Φ−∆|

2

)]

, (11)

where we have defined a ≡ (G1 −G2) /GT , thus to-
tally encoding the open channels. The entrance and exit
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FIG. 4: In this figure we show the concavity and the sign of
the noise power for all values of the tunneling rate and of the
asymmetry parameter.

events of the QD are uncorrelated and the asymmetric
parameter a of the tunneling rate was used in Ref. [11]
to designate the normalized moments of a single level in
the QD.
In Figure (3), we analyze how the tunneling rates af-

fects the noise, equation (7), through the a parameter.
Note that for ideal contacts, Γ1 = Γ2 = 1 the noise
is highly asymmetrical with respect to this parameter.
This asymmetry is a result of of the spin accumulation
in QD, considering that the noise is always symmetrical
with respect to a in the absence of spin accumulation,
regardless to the values of Γ1 and Γ2. A similar asym-
metry effect owing to the topology of the QD was re-
ported in [34]. In the other curves shown in this figure
(3), we present the behavior of the noise when we vary
the values of the parameters Γ1 and Γ2 till we reach the
opaque limit, Γ1,2 → 0. In the transition between the two
regimes, we found that decreasing the tunneling rates has
the effect of symmetrizing the noise. Surprisingly, in the
opaque limit the noise becomes symmetric with respect
to a even in the presence of spin accumulation at any
value of ∆. Namely, the opaque limit symmetrizes the
noise with spin accumulation, and the control parameter
responsible for this transition is the tunneling rate ex-
emplified by Γi. In addition, once again we find that for
values such that ∆ > Φ, the noise remained stationary
in terms of a.
We note here that the ideal-opaque transition, deter-

mined by the finite value of the tunneling rate, also in-
verts the concavity of the noise signal. The second deriva-
tive of the noise as a function of the asymmetry param-
eter can be written as

∂2

∂a2
〈S11〉
kBT 〈g〉

= f(a,Γ1,Γ2)× g(Φ,∆), (12)

FIG. 5: We show the behavior of the shot noise in the case of
spin accumulation as a function of a = (G1 −G2) /GT , in a
QD with non-ideal contacts, equation (13). For any value such
that δµ ≥ eV , the result will always be the same for the shot
noise which is a direct consequence of the spin accumulation
in the reservoirs.

where f(a,Γ1,Γ2) ≡ 4 + 3Γ1(a − 1) − 3Γ2(a + 1) and
g(Φ,∆) is a function of Φ and of ∆. We observe that
the sign of the second derivative is fixed by the sign of
f . We separate the diagram generated by Γ1 × Γ2 into
three distinct regions according to the sign (+) and (−)
as is exhibited in figure 4. The (+) and (−) regions
determine, respectively, upward or downward concavity,
whereas (+/−) determines a change of concavity in the
sign of the noise power in a ∈ [−1, 1]. Note that these
regions are separated be the straight lines Γ1 = 2/3 and
Γ2 = 2/3 in the diagram. The particular case of ideal,
maximum tunneling rate, case is a vertex of the diagram
situated in the (−) region, whereas the opaque, zero tun-
neling, limit is close to the vertex in the neighborhood of
the (+) region in the diagram.
Finally, we consider the limit eV, δµ ≫ kBT in (11).

This limit allows us to get the shot-noise given by the
following expression

〈S11〉
〈g〉 =

(

1 + a2
)

2
(|eV + δµ|+ |eV − δµ|)

+

(

1− a2
)

2
|δµ|; (13)

〈S11〉
〈g〉 = 2

(

1 + a2
)

2
|eV |, eV ≫ δµ

〈S11〉
〈g〉 = 2

(

3 + a2
)

4
|δµ|, δµ ≫ eV

One of the principal result of this paper is the following:
In systems with accumulation of the spin, the Fano
factor, F =

(

1 + a2
)

/2, measured experimentally in
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Ref. [11] without taking into account the spin accu-
mulation, presents a correction given by

(

1− a2
)

/4.

Thus the Fano factor changes to F =
(

3 + a2
)

/4 in the
limit δµ ≫ eV with F = 〈S11〉/2eI. Figure 5 shows the
shot-noise, equation (13), as a function of the parameter
a. For any value where δµ ≥ eV the result for the
shot-noise will always be the same, once again indicating
a saturation of the spin accumulation in the noise power.
When eV ≥ δµ the shot-noise power approaches the
result without spin accumulation.

V. SUMMARY AND CONCLUSIONS

In this paper we have analyzed the effect of tunnel-
ing and reflection at the gates of open quantum dots on
the spin accumulation in electronic reservoirs. We an-
alyzed separately the spin-up and spin-down Fermi dis-
tributions, and studied the average current-current cor-
relation function using the Landauer-Büttiker formalism.
More specifically we investigated noise power in the pres-
ence of reflection at the voltage gates of the QD using
the Poisson kernel as the scattering matrix distribution.
We have obtained general equation for the study of the
multi-terminal case with spin accumulation at the ther-
mal crossover, and gave details for the two-terminal case.
The dominant term in the semi-classical expansion of the
noise power which is valid for all Universal Classes of
Random Matrix Ensembles, and in all limits, was shown
to be greatly affected by spin accumulation in the reser-
voirs.
We found that important modification in the behav-

ior of the average noise ensues when tunneling rates are
taken into account, especially close to the opaque limit.

In particular,by introducing the asymmetry parameter,
we have shown the symmetrization of the noise power in
the opaque limit of the thermal crossover. We performed
a complete analysis of the rather surprising change of
the concavity of the trace of the noise as a function of
the asymmetry parameter, and have shown that only the
opaque limit is totally symmetrical with well defined con-
cavity. We have also exhibited results showing the effect
of the tunneling rate on the saturation of the spin accu-
mulation, potentially of experimental value as it shows
the effects of the induced potentials due to the spin ac-
cumulation.
In Ref. [14], it was shown that fine adjustment of the

voltage gates can alter the orbital configuration of the
QD, restauring the tunneling between resonant levels of
excited spin states in the presence of a magnetic field.
An asymmetry parameter was used in Ref. [11] to obtain
the noise in the presence of finite tunneling rates. Typi-
cal values used in that reference were in the range 1000
Hz - 10000 Hz, generating clear noise signal as a function
of the asymmetry parameter. We performed an analysis
of the correction to the shot-noise power and the Fano
factor, resulting from the spin accumulation, in terms
of reflections at the gates and the asymmetry parameter.
Our findings may facilitate the experimental study of spin
accumulation in reservoirs of mesoscopic systems in gen-
eral. Other recent studies including electron-electron in-
teraction or capacitance can be investigated considering
barriers and spin accumulations [35, 36].
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(2000).

[17] A. Brataas, G. E. W. Bauer, P. J. Kelly, Physics Reports
427, 157 (2006)

[18] F. J. Wegner, Z. Phys. B 35, 207 (1979).
[19] K. B. Efetov, Supersymmetry in Disorder and Chaos

(Cambridge University Press, Cambridge, 1997).
[20] M. L. Horbach and G. Schön, Ann. Phys. (N.Y.) 2, 51

(1993); A. Kamenev and A. Andreev, Phys. Rev. B 60,
2218 (1999); C. Chamon, A. W. W. Ludwig, and C.



8

Nayak, ibid. 60, 2239 (1999).
[21] Yu. V. Nazarov, in Handbook of Theoretical and Com-

putational Nanotechnology, edited by M. Rieth and W.
Schommers (American Scientic, Valencia, CA, 2006); G.
C. Duarte-Filho, A. F. Macedo-Junior, and A. M. S.
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