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The abundances of light elements based on the big bang nucleosynthesis model are calculated using
the Tsallis non-extensive statistics. The impact of the variation of the non-extensive parameter q
from the unity value is compared to observations and to the abundance yields from the standard
big bang model. We find large differences between the reaction rates and the abundance of light
elements calculated with the extensive and the non-extensive statistics. A large deviation of the
non-extensive parameter from q = 1 (corresponding to Boltzmann statistics) does not seem to be
compatible with observations.

I. INTRODUCTION

The cosmological big bang model has made seminal
predictions relevant for our understanding of the uni-
verse, many of which have been spectacularly confirmed
by observation. The model is the only probe of physics
in the early universe during the interval from 3−20 min,
after which the temperature and density of the universe
fell below that which is required for nuclear fusion and
prevented elements heavier than beryllium from forming.
One of the most celebrated predictions of the model is the
cosmic microwave background (CMB) radiation temper-
ature of 2.275 K [1]. The model has also provided strict
constraints and guidance to other areas of science, such
as nuclear and particle physics. One of the constraints
set by the model is the number of light neutrino families,
predicted to be Nν = 3. From the measurement of the
Z0 width by LEP experiments at CERN one knows now
that Nν = 2.9840± 0.0082 [2].

In the big bang model nearly all neutrons end up in
4He, so that the relative abundance of 4He depends on
the number of neutrino families and also on the neutron
lifetime τn (which the big bang model sets at about 886
s). The neutron-lifetime, important for weak reaction
rates has been measured in nuclear physics laboratories
to high precision (885.7 ± 0.8) s, in excellent agreement
with the predictions of the big bang model [3].

The baryonic density of the universe deduced from the
observations of the anisotropies of the CMB radiation,
constrains the value of the number of baryons per pho-
ton, η, which remains constant during the expansion of
the universe. Big bang model predictions also agree with
the experimentally deduced value of from WMAP obser-
vations, η = 6.16± 0.15× 10−10 [4].

Of our interest in this work is the abundances of light
elements in big bang nucleosynthesis. At the very early
stages (first 20 min) of the universe evolution, when
it was dense and hot enough for nuclear reactions to
take place, the temperature of the primordial plasma de-
creased from a few MeV down to about 10 keV, light
nuclides as 2H, 3He, 4He and, to a smaller extent, 7Li
were produced via a network of nuclear processes, re-

sulting into abundances for these species which can be
determined with several observational techniques and in
different astrophysical environments. Apparent discrep-
ancies for the Li abundances in metal poor stars, as mea-
sured observationally and as inferred by WMAP, have
promoted a wealth of new inquiries on Big Bang Nu-
cleosynthesis (BBN) and on stellar mixing processes de-
stroying Li, whose results are not yet final. Further stud-
ies of light-element abundances in low metallicity stars
and extragalactic H II regions, as well as better estimates
from BBN models are required to tackle this issue, in-
tegrating high resolution spectroscopic studies of stellar
and interstellar matter with nucleosynthesis models and
nuclear physics experiments and theories [5].

One of the basic assumptions to calculate the nuclear
reaction rates during the BBN is the Maxwell-Boltzmann
distribution of the kinetic energy of the nuclei. This dis-
tribution follows the concept that the kinetic energy of
the nuclei present in the primordial plasma are deter-
mined by the classical Boltzmann statistics. The same as-
sumption is used in nucleosynthesis during stellar evolu-
tion. Recently, an increasing number of experiments, the-
oretical developments, have challenged the Boltzmann-
Gibbs description of statistical mechanics. It seems that
the Boltzmann-Gibbs is not adequate for systems with
long range interactions, and with memory effects. There-
fore, it was unavoidable that new approaches for the
Boltzmann-Gibbs formalism were proposed. Nowadays,
a very popular approach is based on the proposal by Tsal-
lis [6], herewith denoted as non-extensive statistics. Sta-
tistical mechanics assumes that energy is an “extensive”
variable, meaning that the total energy of the system is
proportional to the system size; similarly the entropy is
also supposed to be extensive. This might be justified
due to the short-range nature of the interactions which
hold matter together. But if one deals with long-range
interactions, most prominently gravity; one can then find
that energy is not extensive.

Tsallis proposed that to calculate the average values
of some quantities, such as the energy of the system,
the number of molecules, the volume it occupies, etc,
one searches for the probability distribution which maxi-
mizes the entropy, subject to the constraint that it gives
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the right average values of those quantities. He then
proposed to replace the usual (Gibbs) entropy with a
new, non-extensive quantity, now commonly called the
Tsallis entropy, and maximize that, subject to usual con-
straints. There is actually a whole infinite family of Tsal-
lis entropies, indexed by a real-valued parameter q, which
quantifies the degree of departure from extensivity (one
gets the usual entropy back again when q = 1). It was
shown in many circumstances that the classical results
of statistical mechanics can be translated into the new
theory [7].

In the next sections, we shown that the Maxwell-
Boltzmann distribution, a cornerstone of the big bang
and stellar evolution nucleosynthesis, is strongly modi-
fied by the non-extensive statistics. As a consequence, it
also affects strongly the outcome of the BBN. Based on
the successes of the big bang model, it is fair to assume
that our results set strong constraints on the limits of the
parameter q used in non-extensive statistics. Attempts to
solve the lithium problem has assumed all sorts of “new
physics” [5]. This one adds to the list of new attempts,
although our results imply a much wider impact on BBN
as expected for the solution of the lithium problem. As
we show in the next sections, a strong deviation from
q = 1 is very unlikely, based on comparison of observa-
tions and the BBN model.

II. MAXWELLIAN AND NON-MAXWELLIN
DISTRIBUTIONS

Nuclear reaction rates in the BBN and in stelar evolu-
tion are strongly dependent of the particle velocity dis-
tributions. The fusion reaction rates for nuclear species
1 and 2 is given by 〈σv〉12, i.e., an average of the fusion
cross section of 1+2 with their relative velocity, described
by a velocity distribution. It is thus worthwhile to study
the modifications of the stellar reaction rates due to the
modifications introduced by the non-extensive statistics.

A. Non-extensive Statistics

Statistical systems in equilibrium are described by the
Boltzmann-Gibbs entropy,

SBG = −kB
∑
i

pi ln pi, (1)

where kB is the Boltzmann constant, and pi is the proba-
bility of the i-th microstate. For two independent systems
A, B, the probability of the system A+B being in a state
i + j, with i a microstate of A and j a microstate of B,
is

pA+B
i+j = pAi · pBj . (2)

Therefore, the Boltzmann-Gibbs entropy satisfies the re-
lation

SA+B = SA + SB . (3)

Thus, the entropy based on the Boltzmann-Gibbs statis-
tic is an extensive quantity.

In the non-extensive statistics [6], one replaces the tra-
ditional entropy by the following one:

Sq = kB
1−

∑
i p
q
i

q − 1
, (4)

where q is a real number. For q = 1, Sq = SBG. Thus,
the Tsallis statistics is a natural generalization of the
Boltzmann-Gibbs entropy.

Now it follows that

Sq(A+B) = Sq(A) + Sq(B)(1− q)Sq(A)Sq(B). (5)

The variable q is a measure of the non-extensivity. Tsal-
lis has shown that a formalism of statistical mechanics
can be consistently developed in terms of this general-
ized entropy [7].

A consequence of the non- extensive formalism is that
the distribution function which maximizes Sq is non-
Maxwellian [8–10]. For q = 1, the Maxwell distribu-
tion function is reproduced. But for q < 1, high energy
states are more probable than in the extensive case. On
the other hand, for q > 1 high energy states are less
probable than in the extensive case, and there is a cutoff
beyond which no states exist.

B. Maxwellian Distribution

In stars, the thermonuclear reaction rate with a
Maxwellian distribution is given by [11]

Rij =
NiNj
1 + δij

〈σv〉 =
NiNj
1 + δij

(
8
πµ

) 1
2
(

1
kBT

) 3
2

×
∫ ∞

0

dES(E) exp
[
−
(

E

kBT
+ 2πη(E)

)]
, (6)

where σ is the fusion cross section, v is the relative veloc-
ity of the ij-pair, Ni is the number of nuclei of species i,
µ is the reduced mass of i+j, T is the temperature, S(E)
is the astrophysical S-factor, and η = ZiZje

2/h̄v is the
Sommerfeld parameter, with Zi the i-th nuclide charge
and E = µv2/2 is the relative energy of i+ j.

The energy dependence of the reaction cross sections
is usually expressed in terms of the equation

σ(E) =
S(E)
E

exp [−2πη(E)] . (7)

We write 2πη = b/
√
E, where

b = 0.9898ZiZj
√
A MeV1/2, (8)

where A is the reduced mass in amu. The factor 1 + δij
in the denominator of Eq. (6) corrects for the double-
counting when i = j. The S-factor has a relatively weak
dependence on the energy E, except when it is close to a
resonance, where it is strongly peaked.
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Figure 1: Modified Gamow distributions Mq(E, T ) of
deuterons relevant for the reaction 2H(d,p)3H at T9 = 1. The
solid line, for q = 1, corresponds to the use of a Maxwell-
Boltzmann distribution. Also shown are the results when us-
ing non-extensive distributions for q = 0.5 (dotted line) and
q = 2 (dashed line).

C. Non-Maxwellian Distribution

The non-extensive description of the Maxwell-
Boltzmann distribution corresponds to the substitution
f(E)→ fq(E), where [7]

fq(E) =
(

1− q − 1
kBT

E

) 1
q−1

q→1−→ exp
(
− E

kBT

)
, 0 < E <∞. (9)

If q − 1 < 0, Eq. (9) is real for any value of E ≥ 0.
However, if q− 1 > 0, f(E) is real only if the quantity in
square brackets is positive. This means that

0 ≤ E ≤ kBT

q − 1
, if q ≥ 1

0 ≤ E, if q ≤ 1. (10)

Thus, in the interval 0 < q < 1 one has 0 < E <∞ and
for 1 < q <∞ one has 0 < E < Emax = kBT/(q − 1).

With this new statistics, the reaction rate becomes

Rij =
NiNj
1 + δij

Iq, (11)

and the rate integral, I(q), is given by

Iq =
∫ Emax

0

dES(E)Mq(E, T ), (12)
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Figure 2: S-factor for the reaction 2H(d,p)3H as a function of
the relative energy E and of the temperature T9. The data
are from Refs. [12–16]. The solid curve is a polynomial fit to
the experimental data.

where the “modified” Gamow energy distribution is

Mq(E, T ) = A(q, T )
(

1− q − 1
kBT

E

) 1
q−1

e−b/
√
E

= A(q, T )
(

1− q − 1
0.08617T9

E

) 1
q−1

× exp

[
−0.9898ZiZj

√
A

E

]
(13)

is the non-extensive Maxwell velocity distribution,
Emax = ∞ for 0 < q < 1 and Emax = kBT/(1 − q)
for 1 < q < ∞, and E in MeV units. A(q, T ) is a nor-
malization constant which depends on the temperature
and the non-extensive parameter q.

III. REACTION RATES DURING BIG BANG
NUCLEOSYNTHESIS

In figure 1 we plot the Gamow energy distributions of
deuterons relevant for the reaction 2H(d,p)3H at T9 = 1.
The solid line, for q = 1, corresponds to the use of the
Maxwell-Boltzmann distribution. Also shown are results
for non-extensive distributions for q = 0.5 (dotted line)
and q = 2 (dashed line). One observes that for q < 1,
higher kinetic energies are more accessible than in the
extensive case (q = 1). For q > 1 high energies are
less probable than in the extensive case, and there is a
cutoff beyond which no kinetic energy is reached. In the
example shown in the figure for q = 2, the cutoff occurs
at 0.086 MeV, or 86 keV.

We will explore the modifications of the BBN elemen-
tal abundances due to a variation of the non-extensive
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Figure 3: Reaction rates for 2H(d,p)3H as a function of the
temperature T9 for different values of the non-extensive pa-
rameter q. The rates are given in terms of the natural loga-
rithm of NA〈σv〉 (in units of cm3 mol−1 s−1). Results with
the use of non-extensive distributions for q = 0.5 (dotted line)
and q = 2 (dashed line) are shown.

statistics parameter q. We will express our reaction rates
in the form NA〈σv〉 (in units of cm3 mol−1 s−1), where
NA is the Avogadro number and 〈σv〉 involves the in-
tegral in Eq. (6) with the Maxwell distribution f(E)
replaced by Eq. (9). First we show how the reaction
rates are modified for q 6= 1.

In figure 2 we show the S-factor for the reaction
2H(d,p)3H as a function of the relative energy E. Also
shown is the dependence on T9 (temperature in units of
109 K) for the effective Gamow energy

E = E0 = 0.122(Z2
i Z

2
jA)1/3T 2/3

9 MeV, (14)

where A is the reduced mass in amu. The data are from
Refs. [12–16] and the solid curve is a chi-square polyno-
mial function fit to the data.

Using the chi-square polynomial fit obtained to fit the
data presented in figure 2, we show in figure 3 the reaction
rates for 2H(d,p)3H as a function of the temperature T9

for two different values of the non-extensive parameter q.
The integrals in equation (12) are performed numerically.
For charge particles, a good accuracy (witihin 0.1%) is
reached using the integration limits between E0 − 5∆E
and E0 + 5∆E, where ∆E is given by Eq. (15) below.
The rates are expressed in terms of the natural logarithm
of NA〈σv〉 (in units of cm3 mol−1 s−1). The solid curve
corresponds to the usual Maxwell-Boltzman distribution,
i.e., q = 1. The dashed and dotted curves are obtained
for q = 2 and q = 0.5, respectively. In both cases, we
see deviations from the Maxwellian rate. For q > 1 the
deviations are rather large and the tendency is an overall

suppression of the reaction rates, specially at low tem-
peratures. This effect arises from the non-Maxwellian
energy cutoff which for this reaction occurs at 0.086T9

MeV and which prevents a great number of reactions to
occur at higher energies.
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Figure 4: S-factor for the reaction 7Li(p,α)4He as a function
of the relative energy E and of T9. The data are from Refs.
[17–27]. The solid curve is a chi-square function fit to the
data using a sum of polynomials plus Breit-Wigner functions.

For q < 1 the nearly similar result as with the Maxwell-
Boltzmann distribution is due to a competition between
suppression in reaction rates at low energies and their
enhancement at high energies. The relevant range of en-
ergies is set by the Gamow energy which for a Maxwellian
distribution is given by Eq. (14) and by the energy win-
dow,

∆E = 0.2368(Z2
i Z

2
jA)1/6T 5/6

9 MeV, (15)

which for the reaction 2H(d,p)3H amounts to 0.2368T 5/6
9

MeV. This explains why, at T9 = 1, the range of rele-
vant energies for the calculation of the reaction rate is
shown by the solid curve in figure 1. For q < 1 the
Gamow window ∆E is larger and there is as much a con-
tribution from the suppression of reaction rates at low
energies compared to the Maxwell-Boltzmann distribu-
tion, as there is a corresponding enhancement at higher
energies. This explains the nearly equal results shown in
figure 3 for q = 1 and q < 1. This finding applies to
all charged particle reaction rates, except for those when
the S-factor has a strong dependence on energy at, and
around, E = E0. But no such behavior exists for the
most important charged induced reactions in the BBN
(neutron-induced reactions will be discussed separately).
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Figure 5: Reaction rates for 7Li(p,α)4He as a function of the
temperature T9 for two different values of the non-extensive
parameter q. The rates are given in terms of the natural
logarithm of NA〈σv〉 (in units of cm3 mol−1 s−1). Results
with the use of non-extensive distributions for q = 0.5 (dotted
line) and q = 2 (dashed line) are shown.

The findings described above for the reaction
2H(d,p)3H are not specific but apply to all charged par-
ticles of relevance to the BBN. We demonstrate this with
one more example: the 7Li(p,α)4He reaction, responsi-
ble for 7Li destruction. In figure 4 we show the S-factor
for this reaction as a function of the relative energy E.
One sees prominent resonances at higher energies. Also
shown in the figure is the dependence of the reaction on
T9. The data are from Refs. [17–27] and the solid curve
is a chi-square function fit to the data using a sum of
polynomials plus Breit-Wigner functions.

Using the chi-square function fit obtained to fit the
data presented in figure 4, we show in figure 5 the re-
action rates for 7Li(p,α)4He as a function of the tem-
perature T9 for two different values of the non-extensive
parameter q. The rates are given in terms of the natural
logarithm of NA〈σv〉 (in units of cm3 mol−1 s−1). The
solid curve corresponds to the usual Maxwell-Boltzman
distribution, i.e., q = 1. The dashed and dotted curves
are obtained for q = 2 and q = 0.5, respectively. As with
the case presented in figure 3, in both cases we see devia-
tions from the Maxwellian rate. But, as before, for q = 2
the deviations are larger and the tendency is a strong
suppression of the reaction rates as the temperature de-
creases. It is interesting to note that the non-Maxwellian
rates for q = 0.5 are more sensitive to the resonances
than for q > 1 . This is because, as seen in figure 1, for
q < 1 the velocity distribution is spread to considerably
larger values of energies, being therefore more sensitive
to the location of high energy resonances.

We now turn to neutron induced reactions, which are
only a few cases of high relevance for the BBN, notably
the p(n,γ)d, 3He(n,p)t, and 7Be(n,p)7Li reactions. For
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Figure 6: Spectral function Mq(E, T ) for protons and neu-
trons relevant for the reaction p(n,γ)d at T9 = 0.1 (upper
panel) and T9 = 10 (lower panel). The solid line, for q = 1,
corresponds to the usual Boltzmann distribution. Also shown
are non-extensive distributions for q = 0.5 (dotted line) and
q = 2 (dashed line).

neutron induced reactions, the cross section at low ener-
gies is usually proportional to 1/v, where v =

√
2mE/h̄

is the neutron velocity. Thus, it is sometimes appropriate
to rewrite Eq. (7) as

σ(E) =
S(E)
E

=
R(E)√
E

(16)

where R(E) is a slowly varying function of energy simi-
lar to an S-factor. The distribution function within the
reaction rate integral (12) is also rewritten as

Mq(E, T ) = A(q, T )fq(E) = A(q, T )
(

1− q − 1
kBT

E

) 1
q−1

.

(17)

The absence of the tunneling factor exp(−b/
√
E) in Eq.

(17) inhibts the dependence of the reaction rates on the
non-extensive parameter q.

In figure 6 we plot the kinetic energy distributions of
nucleons relevant for the reaction p(n,γ)d at T9 = 0.1
(upper panel) and T9 = 10 (lower panel). The solid line,
for q = 1, corresponds to the usual Boltzmann distribu-
tion. Also shown are results for the non-extensive dis-
tributions for q = 0.5 (dotted line) and q = 2 (dashed
line). One observes that, as for the charged particles
case, with q < 1 higher kinetic energies are more proba-
ble than in the extensive case (q = 1). With q > 1 high
energies are less accessible than in the extensive case,
and there is a cutoff beyond which no kinetic energy is
reached. A noticeable difference form the case of charged
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√
E for the

reaction 7Be(n,p)7Li. is shown in figure 7. The experimental
data were collected from Refs. [28–32]. The solid curve is a
function fit to the experimental data using a set of polynomi-
als and Breit-Wigner functions.

particles is the absence of the Coulomb barrier and a cor-
respondingly lack of suppression of the reaction rates at
low energies. As the temperature increases, the relative
difference between the Maxwell-Boltzmann and the non-
Maxwellian distributions decrease appreciably. This will
lead to a rather distinctive pattern of the reaction rates
for charged compared to neutron induced reactions.

For neutron-induced reactions, a good accuracy
(within 0.1%) for the numerical calculation of the reac-
tion rates with Eq. (12) is reached using the integration
limits between E = 0 and E = 20kBT . As an example
we will now consider the reaction 7Be(n,p)7Li. The en-
ergy dependence of R(E) = S(E)

√
E for this reaction is

shown in figure 7. The experimental data were collected
from Refs. [28–32].

Using the chi-square fit with a sum of polynomials and
Breit-Wigners obtained to reproduce the data in figure 7,
we show in figure 8 the reaction rates for 7Be(n,p)7Li as a
function of the temperature T9 for different values of the
non-extensive parameter q. The rates are given in terms
of the natural logarithm ofNA〈σv〉 (in units of cm3 mol−1

s−1). The solid curve corresponds to the usual Boltz-
mann distribution, i.e., q = 1. The dashed and dotted
curves are obtained for q = 2 and q = 0.5, respectively.
In contrast to reactions induced by charged particles, we
now see strong deviations from the Maxwellian rate both
for q > 1 and q < 1. For q < 1 the deviations are
larger at small temperatures and decrease as the energy
increase, tending asymptotically to the Maxwellian rate
at large temperatures. This behavior can be understood
from figure 6 (for 7Be(n,p)7Li the results are nearly the
same as in Fig. 6). At small temperatures, e.g. T9 = 0.1,
the distribution for q = 0.5 is strongly enhanced at large
energies and the tendency is that the reaction rates in-
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Figure 8: Reaction rates for 7Be(n,p)7Li as a function of the
temperature T9 for two different values of the non-extensive
parameter q. The rates are given in terms of the logarithm
of NA〈σv〉 (in units of cm3 mol−1 s−1). Results with the use
of non-extensive distributions for q = 0.5 (dotted line) and
q = 2 (dashed line) are shown.

crease at low temperatures. This enhancement disap-
pears as the temperature increase (lower panel of figure
6). For q = 2 the reaction rate is suppressed, although
not as much as for the charged-induced reactions, the
reason being due a compensation by an increase because
of normalization at low energies.

Having discussed the dependence of the reaction rates
on the non-extensive parameter q for a few standard re-
actions, we now consider the implications of the non-
extensive statistics to the predictions of the BBN. It is
clear from the results presented above that an apprecia-
ble impact on the abundances of light elements will arise.

IV. BBN WITH NON-EXTENSIVE STATISTICS

The BBN is sensitive to certain parameters, including
the baryon-to-photon ratio, number of neutrino families,
and the neutron decay lifetime. We use the values η =
6.19 × 10−10, Nν = 3, and τn = 878.5 s for the baryon-
photon ratio, number of neutrino families, and neutron-
day lifetime, respectively. Our BBN abundances were
calculated with a modified version of the standard BBN
code derived from Refs. [33–35].

Although BBN nucleosynthesis can involve reac-
tions up to the CNO cycle [36], the most impor-
tant reactions which can significantly affect the pre-
dictions of the abundances of the light elements
[4He, D, 3He, 7Li] are n-decay, p(n,γ)d, d(p,γ)3He,
d(d,n)3He, d(d,p)t, 3He(n,p)t, t(d,n)4He, 3He(d,p)4He,
3He(α, γ)7Be, t(α, γ)7Li, 7Be(n,p)7Li and 7Li(p,α)4He.
Except for these reactions, we have used the reaction
rates needed for the remaining reactions from a compila-
tion by NACRE [37] and that reported in Ref. [38]. For
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Figure 9: Relative abundances of deuterium to hydrogen. The
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extensive distributions for q = 0.5 (dotted line) and q = 2
(dashed line) are shown.

the 11 reactions mentioned above, we have collected data
from Refs. [37–39], and references mentioned therein, fit-
ted the S-factors with a sum of polynomials and Breit-
Wigner functions and calculated the reaction rates for
Maxwellian and non-Maxwellian distributions.

In figure 9 we show the calculated relative abundances
(or mass fraction) of deuterium to hydrogen. The solid
curve is the result with the standard Maxwell distribu-
tions for the reaction rates. Using the non-extensive
distributions yields the dotted line for q = 0.5 and the
dashed line for q = 2. It is interesting to observe that the
deuterium abundances are only moderately modified due
to the use of the non-extensive statistics for q = 0.5. Up
to temperatures of the order of T9 = 1, the mass fraction
for D/H tend to agree for the extensive and non-extensive
statistics. This is due to the fact that any deuterium that
is formed is immediately destroyed (a situation known as
the deuterium bottleneck). But, as the temperature de-
creases, the reaction rates for the p(n,γ)d reaction are
considerably enhanced for q = 2 (see figure 6), and per-
haps more importantly, they are strongly suppressed for
all other reactions involving deuterium destruction, as
clearly seen in figure 3. This creates an unexpected over
abundance of deuterons for the non-extensive statistics
with q = 2. The existence of deuterium at a low but con-
stant primordial fraction in all hydrogen, is one of the ar-
guments in favor of the big bang theory of the universe. It
is estimated that the abundances of deuterium have not
evolved significantly since their production about 13.7
billion years. The predictions for the D/H ratio for the
q = 2 statistics (D/H = 5.70 × 10−3) is about a factor
200 larger than those from the standard BBN model, also
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Figure 10: Mass fraction of 4He. The solid curve is the re-
sult obtained with the standard Maxwell distributions for the
reaction rates. Results with the use of non-extensive distri-
butions for q = 0.5 (dotted line) and q = 2 (dashed line) are
also shown.

clearly in disagreement with the observation, ∼ 2.8×10−5

[5].

Table I: Predictions of the BBN (with ηWMAP = 6.2×10−10)
with Maxwellian and non-Maxwellian distributions compared
with observations. All numbers have the same power of ten
as in the last column.

Maxwell Non-Maxwell Non-Maxwell Observation

BBN q = 0.5 q = 2
4He/H 0.249 0.243 0.141 0.249

D/H 2.62 3.31 570 2.82×10−5

3He/H 0.98 0.91 69.1 (0.9− 1.3)×10−5

7Li/H 4.39 6.89 356. 1.1× 10−10

A much more stringent constraint for elemental abun-
dances is the mass fraction of 4He, which observations set
at about 25% [40]. The 4He mass fraction generated from
a BBN calculation is plotted in figure 10. The solid curve
is the result obtained with the standard Maxwell distri-
butions for the reaction rates. Using the non-extensive
distributions yields the dotted line for q = 0.5 and the
dashed line for q = 2. Again, the predicted abundances
for q = 2 deviate substantially from standard BBN re-
sults. This time only about half of 4He is produced with
the use of a non-extensive statistics with q = 2. The
reason is the suppression of the reaction rate for forma-
tion of 4He for q = 2 from the charged particle reactions
t(d,n)4He, 3He(d,p)4He.

A strong impact of using non-extensive statistics for
both q = 0.5 and q = 2 values of the non-extensive pa-
rameter is seen in figure 11 for the 3He mass fraction.
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Figure 11: Mass fraction of 3He. The solid curve is the re-
sult obtained with the standard Maxwell distributions for the
reaction rates. Results with the use of non-extensive distri-
butions for q = 0.5 (dotted line) and q = 2 (dashed line) are
also shown.

While for q = 2 there is an overshooting in the produc-
tion of 3He, for q = 0.5 one finds a smaller value than the
one predicted by the standard BBN. This is due to the
distinct results for the destruction of 3He through the
reaction 3He(n,p)t, which is enhanced for q = 0.5 and
suppressed for q = 2, in the same way as it happens for
the reaction 7Be(n,p)7Li, shown in figure 7.

V. CONCLUSIONS

In table I we present our results for the predictions
of the BBN with Maxwellian and non-Maxwellian distri-
butions. The predictions are compared with the results
from observations reported in the literature. It is ev-
ident that the results obtained with the non-extensive

statistics strongly disagree with the experimental data.
The overabundance of 7Li compared to observation gets
worse if q > 1. The three light elements D, 4He and 7Li
have well-measured primordial abundances. For all these
abundances, a non-extensive statistics with q > 1 leads
to a great discrepancy with the experimental data.

Except for the case of 3He the use of non-extensive
statistics with q < 0.5 does not rule out its validity
when the non-Maxwellian BBN results are compared to
observations. 3He is at present only accessible in our
Galaxys interstellar medium. This means that it cannot
be measured at low metallicity, a requirement to make a
fair comparison to the primordial generation of light el-
ements. This also means that the primordial 3He abun-
dance cannot be determined reliably. The result pre-
sented for the 3He abundance in table I is quoted from
Ref. [41].

We conclude that it does not seem possible to change
the Maxwell-Boltzmann statistics to reproduce the ob-
served abundance of light elements in the universe with-
out destroying many other successful predictions of big
bang nucleosynthesis. We have calculated a window
of opportunity for the non-extensive parameter q with
which one can reproduce the observed abundance of light
elements. From a chi-square fit of our results with the
observed abundances we conclude that window to be
q = 1+0.04

−0.1 . This means that, should a non-Maxwellian
distribution due to the use of the Tsallis non-extensive
statistics be confirmed (with a sizable deviation from
q = 1), our understanding of the cosmic evolution of the
universe will have to be significantly changed.
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