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DCTA 12.228-900, São José dos Campos, SP, Brazil
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Abstract

We develop a model for visible matter-dark matter interaction based on the exchange of a massive

gray boson called herein the Mulato. Our model hinges on the assumption that all known particles

in the visible matter have their counterparts in the dark matter. We postulate six families of

particles five of which are dark. This leads to the unavoidable postulation of six parallel worlds,

the visible one and five invisible worlds. A close study of big bang nucleosynthesis (BBN), baryon

asymmetries, cosmic microwave background (CMB) bounds, galaxy dynamics, together with the

Standard Model assumptions, help us to set a limit on the mass and width of the new gauge

boson. Modification of the statistics underlying the kinetic energy distribution of particles during

the BBN is also discussed. The changes in reaction rates during the BBN due to a departure from

the Debye-Hueckel electron screening model is also investigated.
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I. DARK/COLD UNIVERSES AND THE MULATO BOSON

The mass density ratios computed from the Wilkinson Microwave Anisotropy Probe

(WMAP) [1] data show that the present day dynamics of the Universe is driven essen-

tially by the Dark Energy (DE), see e.g. [2], Indeed, while ΩDE = 0.734±0.029 for ordinary

baryonic matter, i.e. nuclei and electrons, Ωb = 0.0449 ± 0.0028 which is around 5 times

smaller than the corresponding value for dark matter (DM), ΩDM = 0.222± 0.026.

The nature of dark matter (DM) is a fundamental problem in modern physics. Dark

matter, see e.g. [3–5], is a form of matter that does not interact significantly with ordinary

baryonic matter. Experimental evidence for dark matter comes from the anisotropies of

CMB and the dynamics of galaxy clusters. Elementary particle theory offer scenarios where

new particles such as Weakly Interacting Massive Particles (WIMPs), Sterile Neutrinos,

Axions, Supersymmetric Particles, etc., are possible candidates for DM.

A possible scenario for dark matter is the presence of a mirror(s) sector(s) of particles

[6–10] where the mirror sectors are copies of the Standard Model (SM). The mirror sectors

are not necessarily exact copies of the Standard Model, with, e.g. the mirror particles

having different masses and/or couplings than the corresponding SM particles. Anyway,

ordinary and mirror particles are weakly coupled. Different mirror models provide different

mechanisms for the coupling between ordinary matter and DM.

We developed a mirror model which relies on gauging a symmetry which was so far not

completely explored [11]. Classifying the fundamental matter fields of the Standard Model

according to their electric charge leads, quite naturally, to an SU(3) symmetry, which can

be made local to give dynamics to the interaction. The model does not requires an a priori

number of mirror sectors. However, if the dark sectors are exact copies of the SM, to explain

the relative abundance between ordinary and dark matter, five dark sectors are required.

Note that using the quoted values for ΩDM and Ωb it follows that ΩDM/Ωb = 4.94±0.66; the

error on the ratio was computed assuming gaussian error propagation. Of course, besides

the relative abundance the model should be made compatible with the known cosmological

constraints, with Big Bang Nucleosynthesis (BBN) and with the experimental bounds on

the cross sections for the interaction with ordinary matter.

The gauge model discussed here explores a SU(3) symmetry and introduces a new Weakly

Interacting Massive Gauge boson (WIMG) which couples the different sectors and, in this
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way, provides the link between dark and ordinary matter. The WIMG, called herein the

“Mulato”, being a massive boson, leaves unchanged the long distance properties of the SM

and gravity. The model is compatible with BBN and the recent measurements of the CMB.

Further, the dark sectors associated with multiple universes of dark matter can be made

collisionless if the temperature of the dark sectors is sufficiently lower than the observed

temperature of the visible universe. This difference in the temperature seems to suggest

that the dark sectors are not exact copies of the SM sector.

II. MULATO COUPLING AND MASS

At energies much larger than the typical electroweak scale, the SM matter fields behave

like massless particles. It is natural to group the matter fields according to their [11] electric

charge
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In the following, we will also use the notation Q = {Q1, Q2, Q3, Q4}. We assume that the

DM has a similar structure as observed for ordinary matter. Each DM sector Qs has 4

multiplets which mimic (1) and each sector has its own copy of the SM. Each sector has its

own copy of the SM, with the corresponding electroweak sectors bosons coupling only within

the sector that they are associated with. Our gauge mirror model includes the Mulato gauge

field Ma
µ , the matter fields Qi,s, where the new index s distinguishes between the different

NQ sectors and i qualifies the fermions as in (1). A real scalar field φa belonging to the

adjoint representation of the SU(3)Q group is introduced as an effective way to provide a

mass to Ma
µ , ensuring that the Mulato interaction is short ranged. The Lagrangian for the

gauge theory reads

L = −1

4
F a
µνF

aµν +

NQ
∑

s=1

4
∑

i=1

Qi,s iγ
µDµQi,s + +

1

2
(Dµφa) (Dµφ

a)− Voct(φ
aφa) (2)
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where Dµ = ∂µ + igMT aMa
µ is the covariant derivative, T a stands for the generators of

SU(3)Q group and Voct is the potential energy associated with φa. Note that the second

term in (2) includes a sum over all families of fermions. In L the terms associated with the

SM for each sector s = 1, · · · , NQ and those associated with the quantization of the theory

are omitted.

The kinetic term associated with the scalar field accommodates a mass term for the

Mulato field. The gauge field mass term is associated with the operator

1

2
g2M φc(T aT b)cdφ

dMa
µM

b µ . (3)

The scalar field cannot acquire a vacuum expectation value without breaking gauge invari-

ance. However, to generate a mass for the Mulato it is sufficient to assume a non-vanishing

boson condensate 〈φaφb〉. The origin of this condensate can be associated with local fluctu-

ations of the scalar field.

If the dynamics of the scalar field is such that

〈φa〉 = 0 and 〈φaφb〉 = v2δab , (4)

given that for the adjoint representation tr(T aT b) = 3 δab, it follows that the square of the

Mulato mass reads

M2 = 3 g2Mv2 . (5)

Note that v2 and, therefore, the Mulato mass are gauge invariant. The proof of gauge

invariance follows directly from the transformations properties of φa [11].

III. BIG BANG NUCLEOSYNTHESIS AND BARYON ASYMMETRIES

The gauge model summarized in (2) has new relativistic degrees of freedom that can

increase the expansion rate of the early Universe [12] and affect the BBN [13]. After inflation,

the temperature for the thermal baths associated with each particle species is not necessarily

the same [12]. It depends on the various possible reactions enabling equilibria and on the

Universe thermal history. Let us start discussing the simplest possible picture where all the

dark sectors have the same temperature, different from the ordinary matter thermal bath,

i.e. we are assuming that asymmetric reheating takes place after inflation as in [14–16].

4



The number of possible new particles contributing to the radiation density during the

BBN epoch are constrained by the 4He primordial abundance and the baryon-to-photon

ratio η = nb/nγ, where nb is the baryon density and nγ the photon density in the Universe

[17]. For a radiation dominated Universe at very high temperatures, neglecting the particles

masses, the energy and entropy densities are given by [18]

ρ(T ) =
π2

30
g∗(T ) T

4 and s(T ) =
2π2

45
gs(T ) T

3, (6)

where

g∗(T ) =
∑

B

gB

(

TB

T

)4

+
7

8

∑
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(

TF
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)4
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and
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7

8
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(

TF

T

)3

, (8)

are the effective number of degrees of freedom during nucleosynthesis, gB(F ) is the number

of degrees of freedom of the boson (fermion) species B(F ), TB(F ) is the temperature of the

thermal bath of species B(F ) and T the temperature of the photon thermal bath.

In our case, we consider that the ordinary and dark sectors are decoupled, just after

reheating, with different temperatures: T for ordinary matter and T ′ for the dark sectors.

For the dark sectors, the energy ρ′(T ′) and entropy s′(T ′) densities are given as in (6)

after replacing g∗(T ) → g′
∗
(T ′) and gs(T ) → g′s(T

′), i.e. the effective number of degrees of

freedom in the dark sector, and replacing T by T ′. The entropy in each sector is separately

conserved during the Universe evolution, which leads that x = (s′/s)1/3 is time independent.

Assuming the same relativistic particle content for each sector of the modern universe, one

has gs(T0) = g′s(T
′

0) and it follows that x = T ′/T .

For a radiation dominated era, the Friedman equation is

H(t) =
√

(8π/3c2) GN ρ̄, (9)

where the total energy density is given by ρ̄ = ρ + NDM ρ′, where NDM = NQ − 1 is the

number of dark sectors. From the expression for ρ′, it follows

H(t) = 1.66
√

ḡ∗(T )
T 2

MP l
, (10)

where

ḡ∗(T ) = g∗(T )
(

1 +NDM a x4
)

, (11)
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and MP l is the Planck mass. The parameter a = (g′
∗
/g∗) (gs/g

′

s)
4/3 ∼ 1, unless T ′/T is very

small [12]. At the nucleosynthesis temperature scale of about 1 MeV, the relativistic degrees

of freedom (photons, electrons, positrons and neutrinos) are in a quasi-equilibrium state

and g∗(T )|T=1MeV = 10.75. The extra dark particles change g∗ to ḡ∗ = g∗ (1 +NDM x4).

The bounds due to the relative abundances of the light element isotopes (4He, 3He, D and

7Li) are usually written in terms of the equivalent number of massless neutrinos during

nucleosynthesis: 3.46 < Nν < 5.2 [19]. The extra degrees of freedom introduced by the dark

sectors lead to ∆g∗ = ḡ∗ − g∗ = 1.75∆Nν < 3.85, where ∆Nν is the variation in equivalent

number of neutrinos, and T ′/T < 0.78/N
1/4
DM to reconcile the gauge model with the BBN

data. If NDM = 5, as required by to explain the observed ratio ΩDM/Ωb, then T ′/T < 0.52.

In conclusion, the asymmetric reheating mechanism leads always to dark universes which

are colder than our one universe.

The baryon asymmetry is parameterized by the baryon-to-photon ratio η. The density

number of photons nγ is proportional to T 3 and, therefore, one can write the density number

of dark-photons as n′

γ = x3nγ . The ratio of dark-baryons to ordinary-baryons is given by

β = Ω′

B/ΩB = x3η′/η [15]. The bounds from the BBN on x = T ′/T imply that the baryon

asymmetry in the dark sector is greater than in the ordinary one. Indeed, using the upper

bound x ∼ 0.78/N
1/4
DM and assuming that each sector contributes equally to the Universe’s

energy density β ∼ 1, we obtain η′ ∼ 2.1N
3/4
DMη. For the special where NDM = 5 it follows

that η′ ∼ 7η. Asymmetric Dark Matter models, see e.g. [20–23], give similar results for the

baryon asymmetry.

In principle, the presence of mirror baryon dark matter (MBDM) could give some effect

on the CMB power spectrum. The reason is that the acoustic oscillations of MBDM could

be transmitted to the ordinary baryons. In Ref. [15] this effect was analyzed and their

conclusion is that to obtain an observable effect in CMB data it is necessary to have a ratio

of temperatures T ′/T ≥ 0.6. This bound combined with the BBN analysis provides a lower

bound for the number of dark sectors: 0.35 < NDM .

Galaxy dynamics provide further constraints on DM, see e.g. [24, 25]. In the gauge

model there is no direct coupling between the photon and its dark brothers. Further, it is

assumed that the different sectors behave as the ordinary matter family. It seems natural

that the galaxy halos are neutral relative to the U(1)’s within each sector. The observed

dark matter halos suggest that DM are effectively collisionless and demand an upper bound
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in the cross section of DM-DM interactions [26–29]. The T ′/T bound estimated from BBN

complies with such a statement. A typical cross section is given by σ ≈ (g2T/Λ2)2, where

g is the interaction coupling constant, T is the temperature and Λ a typical mass scale of

the interaction. If the dark sectors are copies of the ordinary matter sector, i.e. g and Λ

are of the same order of magnitude, one can write σ′/σ = (T ′/T )2, where σ′ (σ) is the

cross section for the dark (ordinary) family. The temperature bound from BBN implies

that σ′/σ < 0.61/
√
NDM and, as long as T ′/T is sufficiently small, DM becomes effectively

collisionless. This difference in the temperature seems to suggest that the dark sectors are

not exact copies of the SM sector. Dark Universes are very cold.

IV. ELECTRON SCREENING DURING BBN

Modeling the BBN and stellar evolution requires that one includes the information on

nuclear reaction rates 〈σv〉 in reaction network calculations, where σ is the nuclear fusion

cross sections and v is the relative velocity between the participant nuclides. Whereas v is

well described by a Maxwell-Boltzmann velocity distribution for a given temperature T , the

cross section σ is taken from laboratory experiments on earth, some of which are not as well

known as desired [30–35]. Using the Debye-Hückel model, Salpeter [36] showed that stellar

electron screening enhances cross sections, yielding an enhancement factor. The Debye-

Hueckel model used by Salpeter yields a screened Coulomb potential, valid when 〈V 〉 ≪ kT

(weak screening), which depends on the ratio of the Coulomb potential at the Debye radius

RD [36].

Corrections to the Salpeter formula are expected at some level. Dynamic corrections were

first discussed by [37] and later studied by [38]. Subsequent work showed that Salpeter’s

formula would be valid independent of the Gamow energy due to the nearly precise ther-

modynamic equilibrium of the solar plasma [39–41]. Later, a number of contradictions were

pointed out in investigations claiming larger corrections, and a field theoretic approach was

shown to lead to the expectation of only small (∼ 4%) corrections to the standard formula,

for solar conditions [42].

A good measure of the screening effect is given by the screening parameter given by

Γ = Z1Z2e
2/〈r〉kT , where 〈r〉 = n−1/3. In the core of the sun densities are of the order

of ρ ∼ 150 g/cm3 with temperatures of T ∼ 1.5 × 107 K. For pp reactions in the sun, we
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FIG. 1: Baryon density (solid curve) during the early universe as a function of the temperature

in units of billion degrees Kelvin, T9. The dashed curves are obtained from Eq. (12) with h ∼

2.1× 10−5 and h ∼ 5.7 × 10−5, respectively.

thus get Γ ∼ 1.06 which validates the weak screening approximation, but for p7Be reactions

one gets Γp7Be ∼ 1.5, which is one of the reasons to support modifications of the Salpeter

formula. Also, in the sun the number of ions within a sphere of radius RD (Debye sphere)

is of the order of N ∼ 4. As the Debye-Hueckel approximation is based on the mean field

approximation, i.e., for N = n(4πR3/3) ≫ 1, deviations from the Salpeter approximation

are justifiable.

The electron density during the early universe varies strongly with the temperature as

seen in figure 1, where T9 is the temperature in units of 109 K (T9). This can compared

with the electron number density at the center of the sun, nsun
e ∼ 1026/cm3. The figure

shows that, at typical temperatures T9 ∼ 0.1− 1 during the BBN the universe had electron

densities which are much larger that the electron density in the sun. However, in contrast to

the sun, the baryon density in the early universe is much smaller than the electron density.

The large electron density is due to the e+e− production by the abundant photons during

the BBN.
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The baryonic density is best seen in figure 1. It varies as

ρb ≃ hT 3
9 , (12)

where h is the baryon density parameter [43]. It can be calculated by using Eq. (3.11) of

Ref. [43] and the baryon-to-photon ratio η = 6.19× 10−10 at the BBN epoch (from WMAP

data [44]). Around T9 ∼ 2 there is a change of the value of h from h ∼ 2.1 × 10−5 to

h ∼ 5.7 × 10−5. Eq. (12) with the two values of h are shown as dashed lines in figure 1,

obtained in Ref. [45].

It is also worthwhile to calculate the Debye radius as a function of the temperature. This

is shown in figure 2. The accompanying dashed lines correspond to the approximation of

Eq. (12), with h ∼ 2.1 × 10−5 and h ∼ 5.7 × 10−5. This leads to two straight lines in a

logarithmic plot of

RD = R
(0)
D T−1

9 , (13)

with R
(0)
D ∼ 6.1× 10−5 cm and R

(0)
D ∼ 3.7× 10−5 cm, respectively. In figure 2 we also show

the inter-ion distance by the lower dashed line. It is clear that the number of ions inside the

Debye sphere is at least of the order 103, which would justify the mean field approximation

for the ions. In contrast to protons, electrons and positrons are mostly relativistic and

their chaotic motion will probably average out the effect of screening around the ions. But

because the number density of electrons is large, an appreciable fraction of them still carry

velocities comparable to those of the ions.

Using a standard numerical computation of the BBN we have shown that electron screen-

ing cannot be a source of measurable changes in the elemental abundance. This is verified

by artificially increasing the screening obtained by traditional models [36]. We back our

numerical results with very simple and transparent estimates. This is also substantiated by

the mean-field calculations of screening due to the more abundant free e+e− pairs published

in Ref. [46]. They conclude that screening due to free pairs might yield a 0.1% change on

the BBN abundances. But even if mean field models for electron screening were not reliable

under certain conditions, which we have discussed thoroughly in the text, it is extremely

unlikely that electron screening might have any influence on the predictions of the standard

Big Bang nucleosynthesis.
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FIG. 2: Debye radius during the BBN as a function of the temperature in units of billion degrees

Kelvin (solid line). The dotted lines are the approximation given by Eq. (13) with R
(0)
D ∼ 6.1×10−5

cm and R
(0)
D ∼ 3.7×10−5 cm, respectively. The inter-ion distance is shown by the isolated dashed-

line.

V. BBN WITH NON-EXTENSIVE STATISTICS

An increasing number of experiments, theoretical developments, have challenged the

Boltzmann-Gibbs description of statistical mechanics. It seems that the Boltzmann-Gibbs is

not adequate for systems with long range interactions, and with memory effects. Therefore,

it was unavoidable that new approaches for the Boltzmann-Gibbs formalism were proposed.

Nowadays, a very popular approach is based on the proposal by Tsallis [47], who replace

the traditional entropy by the following one:

Sq = kB
1−

∑

i p
q
i

q − 1
, (14)

where pi is the probability to find the system in the microstate i, q is a real number. For

q = 1, Sq = SBG, and Sq is a natural generalization of the Boltzmann-Gibbs entropy.

Based on the successes of the big bang model, it is fair to assume that it can set strong

constraints on the limits of the parameter q used in a non-extensive statistics description of
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the Maxwell-Boltzmann velocity distribution. In the literature, attempts to solve the lithium

problem has assumed all sorts of “new physics” [45, 48]. The work presented in Ref. [49]

adds to the list of new attempts, although our results imply a much wider impact on BBN

as expected for the solution of the lithium problem. If the Tsallis statistics appropriately

describes the deviations of tails of statistical distributions, then the BNN would effectively

probe such tails. The Gamow window contains a small fraction of the total area under the

velocity distribution. Thus, only a few particles in the tail of the distributions contribute to

the fusion rates. In fact, the possibility of a deviation of the Maxwellian distribution and

implications of the modification of the Maxwellian distribution tail for nuclear burning in

stars have already been explored in the past (see [49] and references therein). In Ref. [49]

it was shown that a strong deviation from q = 1 is very unlikely for the BNN predictions,

based on comparison with observations. Moreover, if q deviates from the unity value, the

lithium problem gets even worse [49].
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