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We study the spin-Hall conductance fluctuations in baflistiesoscopic systems. We obtain universal ex-
pressions for the spin and charge current fluctuationsjréstms of current-current autocorrelation functions.
We show that the latter are conveniently parametrized asriohefd Lorentzian shape lines, functions of an ex-
ternal applied magnetic field and the Fermi energy. We findl tthex charge current fluctuations show quite
unique statistical features at the symplectic-unitaryssover regime. Our findings are based on an evaluation
of the generalized transmission coefficients correlatiorcfions within the stub model and are amenable to
experimental test.

PACS numbers: 05.45.Yv, 03.75.Lm, 42.65.Tg

I. INTRODUCTION dependence allows one to infer the magnitude of the spin cur-
rent. From the technical point of view, we adapt the diagram-
The discovery of the spin Hall effect (SHE} in both matic techni_que devel_oped to describe the electronicpi@mns
metal and semiconductor structures has opened an importaf tWo-terminal chaotic quantum dots in the presence of a
new possibility to control the effects of non-equilibriupirs ~ SPin-orbitinteraction, at the symplectic-unitary CongGoL0
accumulatior?. The basic idea underlying the SHE is to gen- {0 the case of multi-terminal spin resolved currents.
erate spin currents transverse to the longitudinal transgo The paper is organized as follows. In SEG. Il we review
charge by creating an imbalance between the spin up and spihe Landauer-Buttiker approach used to calculate theimult
down state$:’ terminal charge and spin currents. Next, in $et. Ill, wegmes
The detection of spin-Hall conductance fluctuations is ahe diagrammatic theory we employ to calculate the universa
major goal of semiconductor spintronist is, however, a  spin Hall current fluctuations. The phenomenological impli
hard endeavor. The main reason is the difficulty to efficientl cations of our findings are discussed in Sed. IV. Finally, in
connect ferromagnets leads to two-dimensional semicendu&ec[W, we present our conclusions.
tor structure€.For ballistic systems coupled metallic leads, it
is in principle possible to detect the signal when scattebin
impurities induce a separation of the spin states.
Through this mechanism, universal spin-Hall conductance
fluctuations (USCF) can lead to accumulation of spin at the Il. THEORETICAL FRAMEWORK
electron reservoirs. The USCF appear in the transverse cur-
rent measured in multi-terminal devices in the presence of a
sufficiently large magnetic fiell Signals of the spin accumu-
lation can be inferred, for instance, from time-dependeiat fl
tuations of the spectral currents (noise po&eoy from the
analysis of universal conductance fluctuatiéhé? Spin-Hall
conductance fluctuations have been theoretically studied
mesoscopic systems in the diffusives well as in the bal-

In this section we review the scattering matrix formalism
that describes the spin Hall effect in ballistic conductakée
follow the approach put forward in Refs.|12]17,18. We find
helpful for the reader to have, in a nutshell, the expression

¢ the charge and spin currents with their explicit dependence
the electron energy and the presence of an external magnetic

listic regimeZ2 In the absence of both spin rotation Symmetryfield. The I_atter is of pa_rticular importance in our study:eTh
and magnetic field, these studies predict universal spih_l_mmagnetlc field breaks time-reversal symmetry and drives the

conductance fluctuations with a root mean square amplitud®/MPIectic-unitary crossover. The description of the aniv
of about0.18(e/4r). sal spin current fluctuations at the crossover is one of tige ke

So far, a direct detection of spin-Hall currents by analyz-reSUItS of this paper, as discussed in SeL. I1l.

ing transverse current fluctuations has not been made.dn thi We consider multi-terminal two-dimensional systems
paper, we propose an alternative way to infer spin-Hall conwhere the electrons flow under the influence of a spin-orbit
ductance fluctuations, based on the universal relationdstw interaction of the Rashba or/and Dresselhaus type. The de-
spin and charge current fluctuations in chaotic quantum dotwice is connected by ideal point contacts/Ab independent

We find that the change and spin current-current correlatioelectronic reservoirs, denoted by= 1,--- ,A. The elec-
functions show a quite unique dependence on the ratio of openodes are subjected to voltages denoted/hy We use the
modes between transversal and longitudinal terminalss ThiLandauer-Buttiker approach to write thedirection spin re-
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solved current through thigh terminal a& properties using the random matrix theory. In this section,
o2 we describe the procedure to obtain universal spin and eharg
107 = — Z Z 1S o o |2 (Vi = V) (1)  current-current autocorrelation functions given by E@. (
h j.o! mei o and [3). We compare our analytical expressions the with re-
e sults from numerical simulations.
wheres ando’ are the spin projections in the = z,y or z Let us assume that spin-orbit interaction is sufficiently

direction andS is the quaternionic scattering matrix of order strong to fully break the system spin rotational symmetny. |
2N7 x 2N7 that describes the transport of electrons throughother words, the spin-orbit scattering time is much smaller
the system. The total number of open orbital scattering-charthan the electron dwell time in the system, thatdis,. <
nelsisNr = Zf;l N;, whereN; is the number of open chan- 74..1. Hence, in the absence of an external magnetic field,
nels inith lead point contact. the scattering matrix has symplectic symmetry. By incregsi

The electric current at tha&h terminal iin(O) = ]lflT + ]lfli, B, the system is driven through a crossover from the symplec-
for any directionae = z,y, z of the electron spin projection. tic to the unitary symmetry.

Similarly, thea-axis component of the spin curreljt” is de- The resonancé-matrix can be parameterizectas
fined as the difference between the two spin projectionsggalon

the a-axis, namely/(®) = 1o — 1o+,
Let us consider a set up with” = 4 terminals. An applied

S(E,B) =TU[1 - Q'R(E, B)QU] ™ 'T", (5)

) i ! wherelU is a matrix of ordeR M x 20 of quaternionic forn#®
bias voltage between electrodes 1and 2 givesrise toalon-  r stands for the number of resonances of the quantum dot.
gitudinal electronic current and due to the spin Hall effect \ye takers > Nr. The matrice) andT describe projector
to spin currents at the transversal contaét€harge conser- operators of ordef2M — 2N7) x 2M and2Ny x 2M, re-
vation imposes that = 11(0) = 7150). Moreover, due to the spectively. Their matrix elements re€l ; = d;2n,; and
absence of a transversal voltage big@? =0fori = 3,4. Ti; = 6;;. ThematrixRk of order(2M —2Nr)x (2M —2Nr)
Using these constraints, it was shd#mhat the transversal reads
spin currents are given by e.) e o x . ©
_ _ R(e,x exp<—0 +—XU), 6
5 = 3 (T ) ST - T @ M7
where X is an anti-hermitian Gaussian distributed random
matrix, while e = (Tawen/h)E andz? = 7qyen/7p are di-
1 mensionless parameters represenfinand B.
JO =_ (2]\[1 T 4 oN, — T 4 O 4 7'2(10)) Both the dwell timeryw.;; and the magnetic scattering time
4 Tp are a system specific quantitiesrgyen IS usually ex-
_ 1(7-2(:?) _ 7-1(3(’)) Vs — 1(7—2(3) _ 7—&») V., (3) pressed in terms of the decay width, namely- /i/7awen =
2 2 NrA/2m, where A is the system mean level spacing. In
where: = 1,2. For notational convenience one introducesturn,qg1 is the rate by which the electron trajectory accumu-
the dimensionless currents = h/e?(1/V). The effective lates magnetic flux in the quantum dot. For chaotic systems,
voltagesV; (in units of V'), are given by rather lengthy expres- 75 = K(AB)/¢o, whereg, is the unit flux quantumA is
sions of the generalized transmission coefficigﬁﬁ@, which  the guantum dot lithographic area, amds a diffusion coeffi-

can be found in Ref. 12. Finally, the generalized transmissi Cl€Nt that depends on the quantum dot geon®try. ,
coefficients read The S-matrix given by Eq.[(b) can be formally expanded in

powers ofU, namely,

wherei = 3,4. Likewise, the longitudinal charge current
reads

TAN(B, B\ B,B') = tr[(1; ® 0®) S'(E, B)1,5(E', B")] ,

(4) S(e,x) =Y TU[Q'R(e,z)QU]" TT,
where ' and B stand for the electron energy and the mag- m=0

nitude of an external magnetic field. The trace is taken over .
the scattering channels that belong to ftte and jth point and used to calculate the ensemble average of the tranemissi

. . - (@) o thi -
contact. The matrix; stands for a projector of the scatter- Coefficients(7;;*’) for M > Nr Following this algebraic

ing amplitudes intath point contact channels. The matrices Procedure, we write the sample transmission coefficient as a
o, with o € {z,y, 2}, are the Pauli matrices, whit¢’ is the ~ tWo-point function of thes-matrix,

2 x 2 identity matrix characterizing an unpolarized (charge) 0o
transport. T\ (e e z,2") = > Tr{(li ® o) T [UTQ'RI(e,2)Q]™
m,n=0
ll. UNIVERSAL SPIN-HALL CONDUCTANCE x U'T1;TU [QTR(¢, z’)QU]" TT} .
FLUCTUATIONS @)

We assume that the electron dynamics in the quantum dot For chaotic quantum dots, as stand&rdie assume the ma-
is ballistic and ergodié?23 and model the system statistical trix elements of/ as Gaussian variables, with zero mean and



variancel /M. This allows one to express the calculation of Tr (1; ® ¢®) = 2N;d,0 and Tr(1;) = 2N; to write
moments and cumulants Gﬁ.a) by an integration over the

-1 0 0 !
unitary group leading to a diagrammatic expansion in powers DTl =2Mo’®0° ~Tr(R®R T) ©)
of NT‘1 in terms of diffusons (ladder) and cooperons (max-with
imally crossed) diagrams. The method is described for the i o 0
Dyson ensembles in Réf.125. This approach has been ex- Tr(RoR") =c"®0 (10)
tended to treat the crossover between symmetry cls¥es X [2M —2Np —2i(e —€) — (z — :c’)ﬂ ,
and is shown to render the same results as the quantum circui . . .
theory2’ where R’ is a shorthand notation faR(¢’,z’). The tensor

products follow the “backward algebrat®t® namely, (o’ ®
N(o* o) = (o'c") @ (ala?).

The diffuson contribution to the generalized transmission
coefficient is obtained by evaluating EQl (8) using the espre
sions [9) and (T0). It reads

The diagrammatic technigéallows one to calculate mo-
ments up to arbitrary order of the transmission coefficients”
It consists in grouping and integrating over the Haar measur
all the independent powers 6f in Eq. (7). Figurd1l shows
the diagrams that represent the leading order contribsition
all possible contractions of tHé matrices. In the sum of Eq. o N;N; 1
(@, we verify that, after taking the average ovéronly the <7;§- Ve, ez, 2'))D = Gag NDJ (2 + N—D) . (11)
powers withm = n contribute to the average transmission
coefficients. The white and black dots in Fig. 1 stand for thewhereNp = Np[l —i(¢' —¢) + (2’ —2)?/2].
indices of the matrix/, with elements/;; in the channels ~ We are now ready to evaluate the two maximally crossed

space, while the Greek symbols represent the Pauli matricé§agrams at the bottom row of Figl 1. They are known as
indiceso, , in the spin space. cooperon€ and represent the main quantum interference cor-

rection to the conductance in chaotic systems, resporfsible
the weak localization peak.

O_I r X . i
. e Following the procedure described above, we obtain the
cooperon contribution for the generalized average average
transmission, namely,
¢ : -0

« ! / c 1 «
- o T e ) = 5 X [T T D)

o'o’ p'p o P po

_ﬁTr(Fi(a)(TfTTT))Tr(Fj)} | . (12)

The operatofl = ¢° ® ¢V is related with the time-reversed

of path in the cooperon channel of the dual space. We also
FIG. 1: Diagrams representing the leading contributiorthéoaver-  4efine the matrices

age transmission coefficiem;g“)> of Eq. (). Vertical lines repre- (@)

sent contractions of the matrix elements. The white and black dots FY =1®0"+Tr(l; ® ¢*)D (R'" ® R),

in stand for the channel indices of the matfixand the Greek sym- 4 _ /t

bols represent the Pauli matrices indiegs, in the spin space. The F; =1;+Tr(1;)D(R" ® R), (13)
first diagram (top) is known as diffuson and accounts for #mis  where

classical diffusive processes. The two others diagramkraoen as .

cooperons and give the mean quantum correction, namelyeh& fou = [2MUO ®@c’ ~Tr(R® R*)] ,

(anti)localization corrections. frr = (2]\/10_0 ® O’O) Tr(R® R™) fuu. (14)

The diagram at the top row of Figl 1 is called diffuson, in The Superscript denotes the quaternion complex conjuga-
analogy to the ladder diagram that appears in diagrammation- Using the quaternionic conjugation rules and takime t
expansion to calculate the conductivity in disorderedudiffe ~ lIMit M — oo, we obtain
mesoscopic systendd The diffuson contribution to the aver- f&é —92Ngo® ® o°.

age transmission coefficient reads
g frr = (2Moo ® 00)[(2M — 2Ne)oo ® ool fuv,  (15)
(T e a2 )@ =2 [Tr (1@ o) DTr (1) whereNg = Nr[l —i(¢' — ) + (2 +)*/2].

Y 2 Summing up the diffuson and the cooperon contributions to
the generalized transmission coefficients we obtain

poicp. (@) N 2N;N; | N,
(8) (T (e,e’,x,x’)>5ao{ N +NC

po

—Tr(1; ® 0®) D*Tr(1;)

: - - N, [Np +i(e —€)]
where, for clarity, we make explicit the spin degree free- = J > — 6| +. (16)
dom of the symplectic structure. We use the properties Np



4

Fora = 0, Eq. [I6) reproduces the average electron transmisieal situations, it is sufficient to consider transmission
sion reported in the literatu®. As expected in this case, the coefficients with single energy and magnetic field argu-

average spin transmission coefficients are zero.

Following

.

ments, that is,ﬁga)(e,x) = T(.a)(e,e,z,z).

Let us now analyze the transmission coefficient fluC-ye giagrammatic approa@h,we calculate the covariance

tuations.

We use the same diagramatic procedure de-
scribed above for all th&2 diagrams characteristic of the
usual covariance calculatiof%.To address relevant phys-

cov[Ti (e, 2), T (¢ a)] = (T (e, )T, (¢ a")) —
(T4 (e, 2)) (TP (¢, ")) and obtain

J

N;N; NN 1 0i101N; N 0:10. N; N
cov | T4 (e,), T (€ a!)] = dag =5 by | Gap R g SHOTE Tk
# \INof*  INe| [N [Nel
N;N SN 8NN, 8Ny + 64N,
_ i k 6(10 jl 32+ » kiVj l2 5a0 ik LV 2[ j (17)
v\ "IN Ni [Np| |Nel

3.0 T T T T T T T T

2.5 N-AHALA) (A [AY A-AHAA] A& AL EHAHA-A] &) A EHAHA A & A A

—_— ®) S (x) 1
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FIG. 2: (Color online) Generalized average transmissiaffiient

(7;;“)(6, x = 0)) versus energy = E/T" for different spin and ter-
minal indices. The analytical results (stub model) areespnted by
the solid and doted lines, while the results of numericalutions

(RMT Hamiltonian model) are represented by the symbols. fiie
ure inset describes the diﬁereﬁ@“).

numerically simulations, we considér > B., namely, the
specific case of pure ensembles. Accordinglyis taken as

a member of the Gaussian unitary ensemble corresponding to
the case of broken time-reversal symmetric case, usually de
noted byg = 2. The matrixi¥ of dimension/ x (2Nr) con-

tains the channel-resonance coupling matrix elementseSin
the H matrix is statistically invariant under unitary transfor-
mations, the statistical properties §fdepend only on the
mean resonance spacifg determined by, andW /. We
assume a perfect coupling between channels and resonances,
which corresponds to maximizing the average transmission
following a procedure described in Ref] 31.

For simplicity, we take the case &f = N,. The results
presented in Figd]2 arld 3 correspond to the systems with
N = 5 perfectly coupled modes ant! = 400 resonant
levels. Hence, th&-matrix has2 N+ = 40 open channels.
The ensemble averages are taken aViee= 10° realizations
within an energy interval around the band center, comggisin
about)M /4 resonances.

Figure[2 compares the average transmis$@ﬁ)(e)> ob-
tained from the numerical simulations with the analytical e
pression[(d6) for a number of different cases. The agreement

Support to our analytical findings is provided by numeri- is very good, with accuracy of the order Bf /%, The sim-
cal simulations. For that purpose, we find convenient to emulations indicate that the average transmission in statioim

ploy the Hamiltonian approach to the-matrix2°. The lat-
ter is more amenable for numerical simulations than $he

e = E/T, as it should.
Figurel3 contrasts transmission coefficient covariances ca

matrix parametrization of EqLK5) and both are statisticall culated using Eq{17) with those obtained from numerical

equivalent?
The Hamiltonian parametrization of tt{ematrix reads

S(E,X)=1-2miW'(E—-H(B)+inWW"H)~'W | (18)

whereF is the electron propagation energy alHdB) is the

simulations for a number of different cases. As before, the
discrepancies are very small and stay within the statigiiea
cision N, /2. The random matrix theo® predicts an auto-
correlation length® = NrA/(27) for a two-terminal geome-
try. Our results for the correlation function extend thédato

matrix of dimensior2M x 2M that describes the resonant four-terminal geometries with (or without) spin polarimat

states (/ orbital states times the 2 spin projections). In gen-

eral, H depends on one (or more) external parameler#\s

Let us now return to the problem of spin and charge cur-
rent and effective potential. As mentioned, both are combi-

discussed before, we are interested in the case where by inations of transmission coefficients. Fortunately, it isgo
creasingB one breaks time-reversal symmetry, driving theble to calculate average currents and current-currenéleerr
system from the symplectic to the unitary symmetry. In ourtion functions in terms of the average and the transmission



5

channels, namely,V; (e, z)) = 1/2(Ny — N3)/(Ny + Na),
with i = 3,4. We also note that the ensemble average of the

0T, (O, )] - spin current is always zerd,) (e, z)) = 0, with i = 3,4
@ cov[T%, (e), T, ()] (RMT) anda # 0, independently of the energy and magnetic field.
g B cov[T% (), T% ()] (RMT) The USCF do not depend on the device geometry (nor on
= = = VT @ T @) - the positions of the terminals), but rather on the number of
=% 7 ooVT @), T (RMT) open channels at each terminal. Without loss of generality,
3 & o770, 77, ()] (RMT) let us analyze the spin current covariance for the dése=
= " oM7Y 6. T (@ - N> = N andN3; = N, = nNN, a setting that is easily realized
5= g D UTITTLN RMT) in experiments. Herey is a real positive number that we call
S %% o7 (a), T, &) (RMT) “channel factors2
§ = i For the spin currents, for which # 0, we obtain
0.0 ;ﬁgﬁ.ﬁ,?ﬁgﬁﬁ%ﬁﬁﬁﬁ%@%@@%ﬁﬁﬁﬁ'?ﬁﬁﬁkﬁ cov Ji(a) (6,1’), Ji(a) (6/,1’/)} _ 1 n/(12+2n)2 2 19)
0 p SEL 2 3 8 (14 6x2)2 + de

wherede = € — ¢ anddxr = = — /. It is worth noticing
that, forn = 1 andde = dx = 0, Eq. [I9) perfectly repro-
duces the recent reported restit€ for the universal fluctua-
tions of the transverse spin conductance, namely|Gias =

FIG. 3: (Color online) Transmission coefficient covariance
cov[7;§“)(e,:c = 0)7;([5)(5’,37 = 0)] as a function of the energy
differenceAe = (E — E’) /T for different spin and terminal indices.
The analytical results (stub model) are represented bydlie and

doted lines, while the results of numerical simulations (RNamil- e/47r{cov[Ji(“) (€, 7), JZ.(Q) (e,2)]}'/? ~ 0.18¢/4m.
tonian model) are represented by the symbols. The figure tese Equation[[IP) shows that the spin current correlation func-
scribes the differentov[7;\™ () 7.\ (¢)] considered. tions do not depend on the cooperon channels, that give rise

to terms containingVe. Hence, these quantities do not de-
pend on the magnetic field, representedcbput rather on its
coefficients correlation functions already calculated emid-  variations,z. As a consequence, in the set up we consider,
firmed numerically. The effective voltagé% andV, show the spin current fluctuations are invariant in the symptecti
sample-to-sample fluctuations that depend both on the gnerginitary crossover regime, a quite remarkable property.
and magnetic field. On the other hand, as discussed ilﬁef. 12, The charge current fluctuations, on the other hand, depend
their ensemble averages depend only on the number of opdroth on the cooperon and diffuson channels, leading to

(0) ©) (1 s L] 1+2n 1 1 1
J; J, = — 20
o AT 16{ P (1402 +oe  Qxmilis@eronProaf O
[
wherei = 1,2. The magnetic field, represented bydrives IV. ALTERNATIVE STATISTICAL MEASURES

the symplectic-unitary crossover. For= 0, one recovers
the symplectic limit, while the unitary one is attained when
z > 1. Note that in the absence of “transverse” leads, or

n = 0, Eq. [20) reproduces the two-terminal result found in Equations[{T9) and{20) are the main results of this paper.

Ref.L1S. Unfortunately, the statistical sampling required to canfaur
. predictions for the dimensionless currents is rather |argek-
From Eq.[(20) it follows that ing the experimental requirements quite daunting. An easie

accessible statistical measure has been recently pragdsed
The dimensionless curredf“) fluctuates ag andx are var-
ied. Let us call the external parameter Useful statistical
information can be extracted from the number of maxima (or
T+ )1+ 4222 minima) of .theJ_i(O‘)(z) in a given intervallz, z + §z]. Us-
1) nga scale invariance and maximum entropy principle, we re-

which demonstrates that, except for the two-terminal caséte the joint probability of/{*'(2) and its derivatives to a
wheren # 0, the charge currents are not even functions ofgeneral equation for the density of maxima, for spin and/or
the magnetic field: .2° charge transport. The average densities of max(rpﬁﬁb of

16nz(1 + 222)

cov{[J (e, z) — IV (e, ~2)]?} =



the fluctuating currenf(a) are given by°
1.0 1.0
1 /T

<p§o‘)> N et (22) 0.98
Ts 08 0.96

d2 (0% o
Ty =— 5 COV [JZ-( (e, x), J! )(Gl,l‘/)} 0.94
d(02) 62=0 06 0.92

d* (@) (@)

Ty :WCOV {Ji (e,2), J;" (€, x')} . c 0.89

04 0.87

wheredz is de or dx.

It is convenient to write the charge current covariance as
a deformed Lorentzian. For parametric variationSZoiNe
Setcov[Ji(O)(e, x), Ji(o) (e,2")] = av (n, x) /[1+ (6x)2]P=(2),
whereca. (n, x) is a crossover function and. (n, ) charac- e YU Py e—, 0.79
terizes the Lorentzian shape deformation of the chargentirr oo T e
correlation as a function afz. In terms of the factof.,, the X

0.85

average density of maxima reads FIG. 5: [Color online] Contour plot ofi.(n, z) as a function of the
1 magnetic field, represented byand the channel facter. The color
<p§ )> o 6 [hz (n,z) + 1], (23) code is explained at the strip on the right panel.

wherez can be eithee of z. . . . L
Parametric variations efwere first studied in nuclear scat-

tering at low energies and known as Ericson fluctuaféns
As it is well-known, their characteristic correlation func

" ' tion versus energy has a Lorentzian shape. In the pres-
, ence of a perpendicular magnetic field and the channel fac-
08 tor, we obtained a unitary-simplectic crossover of Loremtz
: type shapes, generalizing the correlation functions of Er-
icson fluctuations. For parametric variations fwe set
06 ' cov[J (e, ), JO(,x)] = ac(n,x)/[1 + (5e)2]helmo),
c . wherea.(n,x) is a crossover parameter ahd(n,z) char-
04 acterizes the deformation of the Lorentzian shape. As in the
: previous case, we also obtain a lengthy analytical expyessi
for he(n,z). Its main features are displayed in Figl 5. As
0.2 ’ expectedhy, = limg 00 he(n, ) = limg 0 he(n, z)=1, for
093 pure circular unitary and symplectic ensembles, respagtiv
Figure[® exhibits another remarkable crossover from a sub-
0.0 064 X ) . :

.00 075 100 12 : Lorentzian, for which. < 1, to a Lorentzian behavior.
According to Eq.[(Z2B), the density of maxima correspond-

ing to pure ensembles, namely—= 0 orxz > 1, is (p&“)> =

X

FIG. 4: [Color online] Contour plot of..(n, z) as a function of the - (a)y _ -
magnetic field, represented byand the channel facter. The color 6(2}253% +1) ~ 0'_68 and (p) = 6(hL +1) =~ .
code is explained at the strip on the right panel. 0.555=, for both spin and charge currents. We emphasize
that for the case of the spin correlation function, Hql (19),
= hy, = 1 andh, = hge, = 2 evenin the crossover

he
Using Egs. [(2D) and[(23), we obtain an exact analyti-

; - ; regime (any value of andz).
cal expression for (n, ). Its explicit form is not pre- o ;s now focus on the longitudinal (charge) correla-

sented here, since it is rather lengthy. Figlire 4 |IIusigrateti0n function, Eq. [(2D). For a given value of the channel

its general features. For the unitary symmetry limit, it is irv factor o) h . lobal .
well stablishe@ that the electronic conductance correlation 25YMMetry factorpz ™ (n, x)) has a unique global maximum,

function shows a square Lorentzian behavior Accordingsy, w (Pz (7, Zmaa)), @nd minimum <P§c0)(” Tmin)) The differ-

find hgqr, = limy—o0 hy(n, z) = limy_o hy(n,z) = 2, for  ence, A{p,(n)) = (pa () (N, Tmaz)) — (pgco)(n,xmm)) in-

the pure circular unitary and symplectic ensembles, respecreases withm until it saturates atv ~ 3. In the absence
tively. The symplectic-unitary crossover shows a mucheaich of spin leads, we find the differencé (p.(0)) ~ 0.27.
behavior. Figur€l4 exhibits a remarkable crossover betweeim the presence of spin leads, we g&tp,.(0.5)) ~ 0.19,
sub-Lorentzian, for whiclh, < 1, with a minimum value of A {p,(1)) ~ 0.17, A (p,(2)) ~ 0.15, andA (p,.(5)) =~ 0.14.

h. =~ 0.64, and super-Lorentzian, for whidh, > 1 with a  Thus, in measurements made with a perpendicular magnetic
maximum value of, ~ 2.92. field, for symmetric channelsi(= 1), the spin terminals lead



to a reduction in the signal of abod%%, which becomes ductance fluctuations are universal functions, with aut@zo
even larger with increasing. Interestingly, the maximum lation functions that depend on the magnitude of the exter-
and minimum of(p,.) correspond to magnetic field strengths nal magnetic field3 and the channel asymmetry factar A
Tmin = 0.20 @andz,,q, =~ 0.47, forn € [0, 5], arather narrow clear intermediate case of symplectic-unitary transéldre-
range of values which is accessible experimentally. havior is found and can be tested experimentally. In particu
In contrast to/p..(n)), the energy variation generates a den-lar, the spin current can be measured by using the charge cur-
sity of conductance peaks containing a single global mini+ent density of maxima. The results of this Letter extend the
mum, (p.(n, Tmin)), @and no global maximum. This minimum understanding of mesoscopic fluctuations to spin- and eharg
is located in a very narrow range of valuespf;,, ~ 0.26 as  currents in the symplectic-unitary crossover, charastierof
a function ofn. The minimum value of the density at these quantum dots subjected to an external magnetic field.
points is of the order ofp.) ~ 0.52.
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