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We study the spin-Hall conductance fluctuations in ballistic mesoscopic systems. We obtain universal ex-
pressions for the spin and charge current fluctuations, castin terms of current-current autocorrelation functions.
We show that the latter are conveniently parametrized as deformed Lorentzian shape lines, functions of an ex-
ternal applied magnetic field and the Fermi energy. We find that the charge current fluctuations show quite
unique statistical features at the symplectic-unitary crossover regime. Our findings are based on an evaluation
of the generalized transmission coefficients correlation functions within the stub model and are amenable to
experimental test.

PACS numbers: 05.45.Yv, 03.75.Lm, 42.65.Tg

I. INTRODUCTION

The discovery of the spin Hall effect (SHE)1–4 in both
metal and semiconductor structures has opened an important
new possibility to control the effects of non-equilibrium spin
accumulation.5 The basic idea underlying the SHE is to gen-
erate spin currents transverse to the longitudinal transport of
charge by creating an imbalance between the spin up and spin
down states.6,7

The detection of spin-Hall conductance fluctuations is a
major goal of semiconductor spintronics.8 It is, however, a
hard endeavor. The main reason is the difficulty to efficiently
connect ferromagnets leads to two-dimensional semiconduc-
tor structures.9 For ballistic systems coupled metallic leads, it
is in principle possible to detect the signal when scattering by
impurities induce a separation of the spin states.

Through this mechanism, universal spin-Hall conductance
fluctuations (USCF) can lead to accumulation of spin at the
electron reservoirs. The USCF appear in the transverse cur-
rent measured in multi-terminal devices in the presence of a
sufficiently large magnetic field.6 Signals of the spin accumu-
lation can be inferred, for instance, from time-dependent fluc-
tuations of the spectral currents (noise power)10 or from the
analysis of universal conductance fluctuations.11–14Spin-Hall
conductance fluctuations have been theoretically studied for
mesoscopic systems in the diffusive11 as well as in the bal-
listic regime.12 In the absence of both spin rotation symmetry
and magnetic field, these studies predict universal spin-Hall
conductance fluctuations with a root mean square amplitude
of about0.18(e/4π).

So far, a direct detection of spin-Hall currents by analyz-
ing transverse current fluctuations has not been made. In this
paper, we propose an alternative way to infer spin-Hall con-
ductance fluctuations, based on the universal relation between
spin and charge current fluctuations in chaotic quantum dots.
We find that the change and spin current-current correlation
functions show a quite unique dependence on the ratio of open
modes between transversal and longitudinal terminals. This

dependence allows one to infer the magnitude of the spin cur-
rent. From the technical point of view, we adapt the diagram-
matic technique developed to describe the electronic transport
in two-terminal chaotic quantum dots in the presence of a
spin-orbit interaction, at the symplectic-unitary corssover,15,16

to the case of multi-terminal spin resolved currents.

The paper is organized as follows. In Sec. II we review
the Landauer-Büttiker approach used to calculate the multi-
terminal charge and spin currents. Next, in Sec. III, we present
the diagrammatic theory we employ to calculate the universal
spin Hall current fluctuations. The phenomenological impli-
cations of our findings are discussed in Sec. IV. Finally, in
Sec. V, we present our conclusions.

II. THEORETICAL FRAMEWORK

In this section we review the scattering matrix formalism
that describes the spin Hall effect in ballistic conductors. We
follow the approach put forward in Refs. 12,17,18. We find
helpful for the reader to have, in a nutshell, the expressions for
the charge and spin currents with their explicit dependenceon
the electron energy and the presence of an external magnetic
field. The latter is of particular importance in our study: The
magnetic field breaks time-reversal symmetry and drives the
symplectic-unitary crossover. The description of the univer-
sal spin current fluctuations at the crossover is one of the key
results of this paper, as discussed in Sec. III.

We consider multi-terminal two-dimensional systems
where the electrons flow under the influence of a spin-orbit
interaction of the Rashba or/and Dresselhaus type. The de-
vice is connected by ideal point contacts toN independent
electronic reservoirs, denoted byi = 1, · · · ,N . The elec-
trodes are subjected to voltages denoted byVi. We use the
Landauer-Büttiker approach to write theα direction spin re-
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solved current through theith terminal as19

Iασi =
e2

h

∑

j,σ′

∑

m∈i

n∈j

|Sα
m,σ;n,σ′ |2(Vi − Vj) (1)

whereσ andσ′ are the spin projections in theα = x, y or z
direction andS is the quaternionic scattering matrix of order
2NT × 2NT that describes the transport of electrons through
the system. The total number of open orbital scattering chan-
nels isNT =

∑N
i=1 Ni, whereNi is the number of open chan-

nels inith lead point contact.
The electric current at theith terminal isI(0)i = Iα↑i + Iα↓i ,

for any directionα = x, y, z of the electron spin projection.
Similarly, theα-axis component of the spin currentI

(α)
i is de-

fined as the difference between the two spin projections along
theα-axis, namely,I(α)i = Iα↑i − Iα↓i .

Let us consider a set up withN = 4 terminals. An applied
bias voltage between electrodesi = 1 and 2 gives rise to a lon-
gitudinal electronic currentI and due to the spin Hall effect
to spin currents at the transversal contacts.11 Charge conser-
vation imposes thatI ≡ I

(0)
1 = −I

(0)
2 . Moreover, due to the

absence of a transversal voltage bias,I
(0)
i = 0 for i = 3, 4.

Using these constraints, it was shown12 that the transversal
spin currents are given by

J
(α)
i =

1

2

(
T

(α)
i2 − T

(α)
i1

)
− T

(α)
i3 Ṽ3 − T

(α)
i4 Ṽ4 (2)

where i = 3, 4. Likewise, the longitudinal charge current
reads

J
(0)
i =

1

4

(
2N1 − T

(0)
11 + 2N2 − T

(0)
22 + T

(0)
12 + T

(0)
21

)

−
1

2

(
T

(0)
23 − T

(0)
13

)
Ṽ3 −

1

2

(
T

(0)
24 − T

(0)
14

)
Ṽ4 , (3)

wherei = 1, 2. For notational convenience one introduces
the dimensionless currentsJ = h/e2(I/V ). The effective
voltagesṼi (in units ofV ), are given by rather lengthy expres-
sions of the generalized transmission coefficientsT

(0)
ij , which

can be found in Ref. 12. Finally, the generalized transmission
coefficients read

T
(α)
ij (E,E′, B,B′) = tr

[
(1i ⊗ σα)S†(E,B)1jS(E

′, B′)
]
,

(4)

whereE andB stand for the electron energy and the mag-
nitude of an external magnetic field. The trace is taken over
the scattering channels that belong to theith andjth point
contact. The matrix1i stands for a projector of the scatter-
ing amplitudes intoith point contact channels. The matrices
σα, with α ∈ {x, y, z}, are the Pauli matrices, whileσ0 is the
2 × 2 identity matrix characterizing an unpolarized (charge)
transport.

III. UNIVERSAL SPIN-HALL CONDUCTANCE
FLUCTUATIONS

We assume that the electron dynamics in the quantum dot
is ballistic and ergodic,22,23 and model the system statistical

properties using the random matrix theory. In this section,
we describe the procedure to obtain universal spin and charge
current-current autocorrelation functions given by Eqs. (2)
and (3). We compare our analytical expressions the with re-
sults from numerical simulations.

Let us assume that spin-orbit interaction is sufficiently
strong to fully break the system spin rotational symmetry. In
other words, the spin-orbit scattering time is much smaller
than the electron dwell time in the system, that is,τs.o. ≪
τdwell. Hence, in the absence of an external magnetic field,
the scattering matrix has symplectic symmetry. By increasing
B, the system is driven through a crossover from the symplec-
tic to the unitary symmetry.

The resonanceS-matrix can be parameterized as25

S(E,B) = TU
[
1−Q†R(E,B)QU

]−1
T †, (5)

whereU is a matrix of order2M×2M of quaternionic form.26

M stands for the number of resonances of the quantum dot.
We takeM ≫ NT . The matricesQ andT describe projector
operators of order(2M − 2NT ) × 2M and2NT × 2M , re-
spectively. Their matrix elements readQi,j = δi+2NT ,j and
Ti,j = δi,j . The matrixR of order(2M−2NT )×(2M−2NT )
reads

R(ǫ, x) = exp

(
iǫ

M
σ0 +

x

M
Xσ0

)
, (6)

whereX is an anti-hermitian Gaussian distributed random
matrix, while ǫ = (τdwell/~)E andx2 = τdwell/τB are di-
mensionless parameters representingE andB.

Both the dwell timeτdwell and the magnetic scattering time
τB are a system specific quantities.τdwell is usually ex-
pressed in terms of the decay width, namelyΓ = ~/τdwell =
NT∆/2π, where∆ is the system mean level spacing. In
turn,τ−1

B is the rate by which the electron trajectory accumu-
lates magnetic flux in the quantum dot. For chaotic systems,
τ−1
B = κ(AB)/φ0, whereφ0 is the unit flux quantum,A is

the quantum dot lithographic area, andκ is a diffusion coeffi-
cient that depends on the quantum dot geometry.24

TheS-matrix given by Eq. (5) can be formally expanded in
powers ofU , namely,

S(ǫ, x) =

∞∑

m=0

TU
[
Q†R(ǫ, x)QU

]m
T †,

and used to calculate the ensemble average of the transmission
coefficients〈T (α)

ij 〉 for M ≫ NT Following this algebraic
procedure, we write the sample transmission coefficient as a
two-point function of theS-matrix,

T
(α)
ij (ǫ, ǫ′, x, x′) =

∞∑

m,n=0

Tr
{
(1i ⊗ σα)T

[
U †Q†R†(ǫ, x)Q

]m

×U †T 1jTU
[
Q†R(ǫ′, x′)QU

]n
T †
}
.

(7)

For chaotic quantum dots, as standard,15 we assume the ma-
trix elements ofU as Gaussian variables, with zero mean and
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variance1/M . This allows one to express the calculation of

moments and cumulants ofT (α)
ij by an integration over the

unitary group leading to a diagrammatic expansion in powers
of N−1

T in terms of diffusons (ladder) and cooperons (max-
imally crossed) diagrams. The method is described for the
Dyson ensembles in Ref. 25. This approach has been ex-
tended to treat the crossover between symmetry classes15,27

and is shown to render the same results as the quantum circuit
theory.27

The diagrammatic technique25 allows one to calculate mo-
ments up to arbitrary order of the transmission coefficients.
It consists in grouping and integrating over the Haar measure
all the independent powers ofU in Eq. (7). Figure 1 shows
the diagrams that represent the leading order contributions to
all possible contractions of theU matrices. In the sum of Eq.
(7), we verify that, after taking the average overU , only the
powers withm = n contribute to the average transmission
coefficients. The white and black dots in Fig. 1 stand for the
indices of the matrixU , with elementsUij in the channels
space, while the Greek symbols represent the Pauli matrices
indicesσρ,σ in the spin space.

FIG. 1: Diagrams representing the leading contributions tothe aver-
age transmission coefficient〈T (α)

ij 〉 of Eq. (7). Vertical lines repre-
sent contractions of theU matrix elements. The white and black dots
in stand for the channel indices of the matrixU and the Greek sym-
bols represent the Pauli matrices indicesσρ,σ in the spin space. The
first diagram (top) is known as diffuson and accounts for the semi-
classical diffusive processes. The two others diagrams areknown as
cooperons and give the mean quantum correction, namely, theweak
(anti)localization corrections.

The diagram at the top row of Fig. 1 is called diffuson, in
analogy to the ladder diagram that appears in diagrammatic
expansion to calculate the conductivity in disordered diffusive
mesoscopic systems.28 The diffuson contribution to the aver-
age transmission coefficient reads

〈T
(α)
ij (ǫ, ǫ′, x, x′)〉(d) =

1

2

∑

ρσ

[
Tr (1i ⊗ σα)DTr (1j)

− Tr (1i ⊗ σα)D2Tr (1j)
]

ρσ;σρ
,

(8)

where, for clarity, we make explicit the spin degree free-
dom of the symplectic structure. We use the properties

Tr (1i ⊗ σα) = 2Niδα0 and Tr(1j) = 2Nj to write

D−1 = 2Mσ0 ⊗ σ0 − Tr
(
R⊗R′†

)
(9)

with

Tr
(
R ⊗R′†

)
= σ0 ⊗ σ0 (10)

×
[
2M − 2NT − 2i(ǫ− ǫ′)− (x− x′)2

]
,

whereR′ is a shorthand notation forR(ǫ′, x′). The tensor
products follow the “backward algebra” ,15,16 namely,(σi ⊗
σj)(σk ⊗ σl) = (σiσk)⊗ (σlσj).

The diffuson contribution to the generalized transmission
coefficient is obtained by evaluating Eq. (8) using the expres-
sions (9) and (10). It reads

〈T
(α)
ij (ǫ, ǫ′, x, x′)〉(d) = δα0

NiNj

ND

(
2 +

1

ND

)
, (11)

whereND = NT [1− i (ǫ′ − ǫ) + (x′ − x)2/2].
We are now ready to evaluate the two maximally crossed

diagrams at the bottom row of Fig. 1. They are known as
cooperons28 and represent the main quantum interference cor-
rection to the conductance in chaotic systems, responsiblefor
the weak localization peak.

Following the procedure described above, we obtain the
cooperon contribution for the generalized average average
transmission, namely,

〈T
(α)
ij (ǫ,ǫ′, x, x′)〉(c) =

1

2

∑

ρσ

[
Tr
(
F

(α)
i (T fTT T )Fj

)

−
1

(2M)3
Tr
(
F

(α)
i (T fTTT )

)
Tr(Fj)

]

ρσ;ρσ

. (12)

The operatorT = σ0 ⊗ σy is related with the time-reversed
of path in the cooperon channel of the dual space. We also
define the matrices

F
(α)
i =1i ⊗ σα + Tr(1i ⊗ σα)D (R′† ⊗R),

Fj =1j + Tr(1j)D (R′† ⊗R), (13)

where

fUU =
[
2Mσ0 ⊗ σ0 − Tr(R ⊗R∗)

]−1
,

fTT =(2Mσ0 ⊗ σ0)Tr(R⊗R′∗)fUU . (14)

The superscript∗ denotes the quaternion complex conjuga-
tion. Using the quaternionic conjugation rules and taking the
limit M → ∞, we obtain

f−1
UU =2NCσ

0 ⊗ σ0.

fTT =(2Mσ0 ⊗ σ0)[(2M − 2NC)σ0 ⊗ σ0]fUU , (15)

whereNC = NT [1− i (ǫ′ − ǫ) + (x′ + x)2/2].
Summing up the diffuson and the cooperon contributions to

the generalized transmission coefficients we obtain

〈T
(α)
ij (ǫ, ǫ′, x, x′)〉 = δα0

{
2NiNj

ND
+

Ni

NC

×

[
Nj [ND + i(ǫ− ǫ′)]

N2
D

− δij

]}
. (16)
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Forα = 0, Eq. (16) reproduces the average electron transmis-
sion reported in the literature.25. As expected in this case, the
average spin transmission coefficients are zero.

Let us now analyze the transmission coefficient fluc-
tuations. We use the same diagramatic procedure de-
scribed above for all the32 diagrams characteristic of the
usual covariance calculations.25 To address relevant phys-

ical situations, it is sufficient to consider transmission
coefficients with single energy and magnetic field argu-
ments, that is,T (α)

ij (ǫ, x) ≡ T
(α)
ij (ǫ, ǫ, x, x). Following

the diagrammatic approach,27 we calculate the covariance
cov[T

(α)
ij (ǫ, x), T

(β)
kl (ǫ′, x′)] ≡ 〈T

(α)
ij (ǫ, x)T

(β)
kl (ǫ′, x′)〉 −

〈T
(α)
ij (ǫ, x)〉〈T

(β)
kl (ǫ′, x′)〉 and obtain

cov
[
T

(α)
ij (ǫ, x), T

(β)
kl (ǫ′, x′)

]
= δα0

NiNjNkNl

N2
T

(
1

|ND|2
+

1

|NC |
2

)
+ δαβ

δikδjlNiNj

|ND|2
+ δα0

δilδjkNiNk

|NC |
2

−
NiNk

NT

(
δα0

δjlNj

|ND|2
+ δαβ

δikNjNl

Nk |ND|2
+ δα0

δjkNl + δilNj

|NC |
2

)
(17)

0.0 0.5 1.0 1.5 2.0 2.5
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 

 

<
 (

ij>

  <  (x)
11>= <  (x)

12> 

 <  (x)
11> (RMT)

 <  (x)
12> (RMT)

 <  (0)
12>= <  (0)

34> 

 <  (0)
12> (RMT)

 <  (0)
34> (RMT)

FIG. 2: (Color online) Generalized average transmission coefficient
〈T

(α)
ij (ǫ, x = 0)〉 versus energyǫ = E/Γ for different spin and ter-

minal indices. The analytical results (stub model) are represented by
the solid and doted lines, while the results of numerical simulations
(RMT Hamiltonian model) are represented by the symbols. Thefig-
ure inset describes the differentT

(α)
ij .

Support to our analytical findings is provided by numeri-
cal simulations. For that purpose, we find convenient to em-
ploy the Hamiltonian approach to theS-matrix,29. The lat-
ter is more amenable for numerical simulations than theS
matrix parametrization of Eq. (5) and both are statistically
equivalent.30

The Hamiltonian parametrization of theS matrix reads

S(E,X) = 11−2πiW †(E−H(B)+ iπWW †)−1W , (18)

whereE is the electron propagation energy andH(B) is the
matrix of dimension2M × 2M that describes the resonant
states (M orbital states times the 2 spin projections). In gen-
eral,H depends on one (or more) external parametersX . As
discussed before, we are interested in the case where by in-
creasingB one breaks time-reversal symmetry, driving the
system from the symplectic to the unitary symmetry. In our

numerically simulations, we considerB ≫ Bc, namely, the
specific case of pure ensembles. Accordingly,H is taken as
a member of the Gaussian unitary ensemble corresponding to
the case of broken time-reversal symmetric case, usually de-
noted byβ = 2. The matrixW of dimensionM×(2NT ) con-
tains the channel-resonance coupling matrix elements. Since
theH matrix is statistically invariant under unitary transfor-
mations, the statistical properties ofS depend only on the
mean resonance spacing∆, determined byH , andW †W . We
assume a perfect coupling between channels and resonances,
which corresponds to maximizing the average transmission
following a procedure described in Ref. 31.

For simplicity, we take the case ofN ≡ Ni. The results
presented in Figs. 2 and 3 correspond to the systems with
N = 5 perfectly coupled modes andM = 400 resonant
levels. Hence, theS-matrix has2NT = 40 open channels.
The ensemble averages are taken overNr = 105 realizations
within an energy interval around the band center, comprising
aboutM/4 resonances.

Figure 2 compares the average transmission〈T
(α)
ij (ǫ)〉 ob-

tained from the numerical simulations with the analytical ex-
pression (16) for a number of different cases. The agreement
is very good, with accuracy of the order ofN

−1/2
r . The sim-

ulations indicate that the average transmission in stationary in
ǫ = E/Γ, as it should.

Figure 3 contrasts transmission coefficient covariances cal-
culated using Eq.(17) with those obtained from numerical
simulations for a number of different cases. As before, the
discrepancies are very small and stay within the statistical pre-
cisionN−1/2

r . The random matrix theory31 predicts an auto-
correlation lengthΓ = NT∆/(2π) for a two-terminal geome-
try. Our results for the correlation function extend the latter to
four-terminal geometries with (or without) spin polarization.

Let us now return to the problem of spin and charge cur-
rent and effective potential. As mentioned, both are combi-
nations of transmission coefficients. Fortunately, it is possi-
ble to calculate average currents and current-current correla-
tion functions in terms of the average and the transmission
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FIG. 3: (Color online) Transmission coefficient covariance
cov[T

(α)
ij (ǫ, x = 0)T

(β)
kl (ǫ′, x = 0)] as a function of the energy

difference∆ǫ = (E−E′)/Γ for different spin and terminal indices.
The analytical results (stub model) are represented by the solid and
doted lines, while the results of numerical simulations (RMT Hamil-
tonian model) are represented by the symbols. The figure inset de-
scribes the differentcov[T (α)

ij (ǫ)T
(β)
kl (ǫ′)] considered.

coefficients correlation functions already calculated andcon-
firmed numerically. The effective voltages̃V3 and Ṽ4 show
sample-to-sample fluctuations that depend both on the energy
and magnetic field. On the other hand, as discussed in Ref. 12,
their ensemble averages depend only on the number of open

channels, namely,〈Ṽi(ǫ, x)〉 = 1/2(N1 − N2)/(N1 + N2),
with i = 3, 4. We also note that the ensemble average of the
spin current is always zero,〈J (α)

i (ǫ, x)〉 = 0, with i = 3, 4
andα 6= 0, independently of the energy and magnetic field.

The USCF do not depend on the device geometry (nor on
the positions of the terminals), but rather on the number of
open channels at each terminal. Without loss of generality,
let us analyze the spin current covariance for the caseN1 =
N2 = N andN3 = N4 = nN , a setting that is easily realized
in experiments. Here,n is a real positive number that we call
“channel factor”.32

For the spin currents, for whichα 6= 0, we obtain

cov
[
J
(α)
i (ǫ, x), J

(α)
i (ǫ′, x′)

]
=

1

8

n/(1 + n)2

(1 + δx2)2 + δǫ2
(19)

whereδǫ = ǫ − ǫ′ andδx = x − x′. It is worth noticing
that, forn = 1 andδǫ = δx = 0, Eq. (19) perfectly repro-
duces the recent reported results11,12 for the universal fluctua-
tions of the transverse spin conductance, namely, rms[GsH] =

e/4π{cov[J
(α)
i (ǫ, x), J

(α)
i (ǫ, x)]}1/2 ≈ 0.18e/4π.

Equation (19) shows that the spin current correlation func-
tions do not depend on the cooperon channels, that give rise
to terms containingNC . Hence, these quantities do not de-
pend on the magnetic field, represented byx, but rather on its
variations,δx. As a consequence, in the set up we consider,
the spin current fluctuations are invariant in the symplectic-
unitary crossover regime, a quite remarkable property.

The charge current fluctuations, on the other hand, depend
both on the cooperon and diffuson channels, leading to

cov[J
(0)
i (ǫ, x), J

(0)
i (ǫ′, x′)] =

1

16

{
1 + 2n

(1 + n)3
1

(1 + δx2)
2
+ δǫ2

+
1

(1 + n)2
1

[1 + (2x+ δx)2]2 + δǫ2

}
, (20)

wherei = 1, 2. The magnetic field, represented byx, drives
the symplectic-unitary crossover. Forx = 0, one recovers
the symplectic limit, while the unitary one is attained when
x ≫ 1. Note that in the absence of “transverse” leads, or
n = 0, Eq. (20) reproduces the two-terminal result found in
Ref. 15.

From Eq. (20) it follows that

cov{[J
(0)
i (ǫ, x)− J

(0)
i (ǫ,−x)]2} =

16nx(1 + 2x2)

(1 + n)(1 + 4x2)2
,

(21)
which demonstrates that, except for the two-terminal case
wheren 6= 0, the charge currents are not even functions of
the magnetic fieldx.19

IV. ALTERNATIVE STATISTICAL MEASURES

Equations (19) and (20) are the main results of this paper.
Unfortunately, the statistical sampling required to confirm our
predictions for the dimensionless currents is rather large, mak-
ing the experimental requirements quite daunting. An easier
accessible statistical measure has been recently proposed:20

The dimensionless currentJ (α)
i fluctuates asǫ andx are var-

ied. Let us call the external parameterz. Useful statistical
information can be extracted from the number of maxima (or
minima) of theJ (α)

i (z) in a given interval[z, z + δz]. Us-
ing a scale invariance and maximum entropy principle, we re-
late the joint probability ofJ (α)

i (z) and its derivatives to a
general equation for the density of maxima, for spin and/or
charge transport. The average densities of maxima,〈ρ

(α)
z 〉 of
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the fluctuating currentJ (α)
i are given by20

〈
ρ(α)z

〉
=

1

2π

√
T4

T2
(22)

T2 =−
d2

d(δz)2
cov
[
J
(α)
i (ǫ, x), J

(α)
i (ǫ′, x′)

] ∣∣∣∣
δz=0

T4 =
d4

d(δz)4
cov
[
J
(α)
i (ǫ, x), J

(α)
i (ǫ′, x′)

] ∣∣∣∣
δz=0

whereδz is δǫ or δx.
It is convenient to write the charge current covariance as

a deformed Lorentzian. For parametric variations ofz, we
setcov[J (0)

i (ǫ, x), J
(0)
i (ǫ, x′)] = αz(n, x)/[1+(δx)2]hz(n,x),

whereαz(n, x) is a crossover function andhz(n, x) charac-
terizes the Lorentzian shape deformation of the charge current
correlation as a function ofδx. In terms of the factorhz, the
average density of maxima reads

〈
ρ(α)z

〉
=

1

2π

√
6
[
hz(n, x) + 1

]
, (23)

wherez can be eitherǫ of x.
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FIG. 4: [Color online] Contour plot ofhx(n, x) as a function of the
magnetic field, represented byx, and the channel factorn. The color
code is explained at the strip on the right panel.

Using Eqs. (20) and (23), we obtain an exact analyti-
cal expression forhx(n, x). Its explicit form is not pre-
sented here, since it is rather lengthy. Figure 4 illustrates
its general features. For the unitary symmetry limit, it is
well stablished34,35that the electronic conductance correlation
function shows a square Lorentzian behavior Accordingly, we
find hsqL ≡ limx→∞ hx(n, x) = limx→0 hx(n, x) = 2, for
the pure circular unitary and symplectic ensembles, respec-
tively. The symplectic-unitary crossover shows a much richer
behavior. Figure 4 exhibits a remarkable crossover between
sub-Lorentzian, for whichhx < 1, with a minimum value of
hx ≈ 0.64, and super-Lorentzian, for whichhx > 1 with a
maximum value ofhx ≈ 2.92.
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FIG. 5: [Color online] Contour plot ofhǫ(n, x) as a function of the
magnetic field, represented byx, and the channel factorn. The color
code is explained at the strip on the right panel.

Parametric variations ofǫ were first studied in nuclear scat-
tering at low energies and known as Ericson fluctuations36.
As it is well-known, their characteristic correlation func-
tion versus energy has a Lorentzian shape. In the pres-
ence of a perpendicular magnetic field and the channel fac-
tor, we obtained a unitary-simplectic crossover of Lorentzian-
type shapes, generalizing the correlation functions of Er-
icson fluctuations. For parametric variations ofǫ, we set
cov[J

(0)
i (ǫ, x), J

(0)
i (ǫ′, x)] = αǫ(n, x)/[1 + (δǫ)2]hǫ(n,x),

whereαǫ(n, x) is a crossover parameter andhǫ(n, x) char-
acterizes the deformation of the Lorentzian shape. As in the
previous case, we also obtain a lengthy analytical expression
for hǫ(n, x). Its main features are displayed in Fig. 5. As
expected,hL ≡ limx→∞ hǫ(n, x) = limx→0 hǫ(n, x)=1, for
pure circular unitary and symplectic ensembles, respectively.
Figure 5 exhibits another remarkable crossover from a sub-
Lorentzian, for whichhǫ < 1, to a Lorentzian behavior.

According to Eq. (23), the density of maxima correspond-
ing to pure ensembles, namely,x = 0 or x ≫ 1, is 〈ρ

(α)
x 〉 =√

6(hsqL + 1) ≈ 0.68 and 〈ρ
(α)
ǫ 〉 =

√
6(hL + 1) ≈

0.5520,21, for both spin and charge currents. We emphasize
that for the case of the spin correlation function, Eq. (19),
hǫ = hL = 1 andhx = hsqL = 2 evenin the crossover
regime (any value ofn andx).

Let us now focus on the longitudinal (charge) correla-
tion function, Eq. (20). For a given value of the channel
asymmetry factor,〈ρ(0)x (n, x)〉 has a unique global maximum,
〈ρ

(0)
x (n, xmax)〉, and minimum,〈ρ(0)x (n, xmin)〉 The differ-

ence,∆〈ρx(n)〉 ≡ 〈ρ
(0)
x (n, xmax)〉 − 〈ρ

(0)
x (n, xmin)〉 in-

creases withn until it saturates atn ≈ 3. In the absence
of spin leads, we find the difference∆ 〈ρx(0)〉 ≈ 0.27.
In the presence of spin leads, we get∆ 〈ρx(0.5)〉 ≈ 0.19,
∆ 〈ρx(1)〉 ≈ 0.17, ∆ 〈ρx(2)〉 ≈ 0.15, and∆ 〈ρx(5)〉 ≈ 0.14.
Thus, in measurements made with a perpendicular magnetic
field, for symmetric channels (n = 1), the spin terminals lead
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to a reduction in the signal of about37%, which becomes
even larger with increasingn. Interestingly, the maximum
and minimum of〈ρx〉 correspond to magnetic field strengths
xmin ≈ 0.20 andxmax ≈ 0.47, for n ∈ [0, 5], a rather narrow
range of values which is accessible experimentally.

In contrast to〈ρx(n)〉, the energy variation generates a den-
sity of conductance peaks containing a single global mini-
mum,〈ρǫ(n, xmin)〉, and no global maximum. This minimum
is located in a very narrow range of values ofxmin ≈ 0.26 as
a function ofn. The minimum value of the density at these
points is of the order of〈ρǫ〉 ≈ 0.52.

V. SUMMARY AND CONCLUSION

In this paper, we have investigated the spin-Hall conduc-
tance fluctuations in a chaotic open quantum dot with spin-
orbit interaction. Both the electronic and the spin-Hall con-

ductance fluctuations are universal functions, with autocorre-
lation functions that depend on the magnitude of the exter-
nal magnetic fieldB and the channel asymmetry factorn. A
clear intermediate case of symplectic-unitary transitional be-
havior is found and can be tested experimentally. In particu-
lar, the spin current can be measured by using the charge cur-
rent density of maxima. The results of this Letter extend the
understanding of mesoscopic fluctuations to spin- and charge
currents in the symplectic-unitary crossover, characteristic of
quantum dots subjected to an external magnetic field.
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