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Abstract. The angular distributions for elastic scattering and breakup of halo nuclei are
analysed using a near-side/far-side decomposition within the framework of the dynamical eikonal
approximation. This analysis is performed for 11Be impinging on Pb at 69AMeV. These
distributions exhibit very similar features. In particular they are both near-side dominated,
as expected from Coulomb-dominated reactions. The general shape of these distributions is
sensitive mostly to the projectile-target interactions, but is also affected by the extension of the
halo. This suggests that the link between elastic scattering and a possible loss of flux towards
the breakup channel is not obvious.

1. Introduction

The development of radioactive-ion beams in the mid-80s has enabled the exploration of the
nuclear landscape away from stability. This technical breakthrough led to the discovery of
exotic nuclear structures such as halœs [1, 2]. Halo nuclei are light neutron-rich nuclei, which
exhibit a matter radius significantly larger than their isobars. This large size is qualitatively
understood as resulting from their small binding energy for one or two neutrons [3]: Due to
their loose binding, these valence neutrons can tunnel far away from the core of the nucleus
and exhibit a large probability of presence at a large distance from the other nucleons. Halo
nuclei have thus a strongly clusterised structure: they can be seen as a core to which one or two
neutrons are loosely bound. These valence neutrons hence form a sort of diffuse halo around a
compact core. The best known halo nuclei are 11Be and 15C, with a one-neutron halo, and 6He
and 11Li, with a two-neutron halo. Proton halœs can also develop around proton-rich nuclei,
such as 8B or 17F.

Since their discovery, halo nuclei have been at the centre of many studies, both experimental
[4, 5] and theoretical [6, 7]. Due to their short lifetime, they cannot be studied with usual
spectroscopic techniques, and one must resort to indirect methods to deduce information about
their structure. Reactions are the most used tools to study halo nuclei. In particular, elastic
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scattering [8, 9] and breakup [10, 11] convey interesting information about the structure of the
projectile.

Recent experimental [9] and theoretical [8] studies of elastic scattering indicate a strong
coupling between scattering and breakup. On the experimental side, the elastic scattering cross
section for 11Be on Zn around the Coulomb barrier is significantly reduced at large angles
compared to that of non-halo Be isotopes [9]. One explanation of this unexpected reduction
is the transfer of probability flux from the elastic channel to the breakup channel. On the
theoretical side, Matsumoto et al have shown that for the elastic scattering of 6He on Bi at low
energy CDCC calculations agree with experimental data only if the breakup channel is included
in the model space.

To better investigate the interplay between elastic scattering and breakup, we analyse
theoretically the angular distributions for the elastic scattering and breakup of halo nuclei within
a near/far decomposition [12, 13]. We choose 11Be, the archetypical one-neutron halo nucleus,
as testcase and consider its collision on Pb at 69AMeV, which corresponds to the conditions
of the RIKEN experiment [10]. The calculations are performed within the Dynamical Eikonal
Approximation (DEA) [11, 14], which is in excellent agreement with various experimental results.

After a brief reminder of the DEA and the near/far decomposition, we apply this technique
to the elastic-scattering cross section (Sec. 3). We then move to the analysis of the angular
distribution for breakup (Sec. 4) and show how similar both cross sections are at intermediate
energies. In Sec. 5, we emphasise the consequences of this analysis for the study of halo nuclei
and provide the prospects of this work.

2. Theoretical framework

2.1. Dynamical eikonal approximation
Most of the models of reactions involving one-neutron halo nuclei rely on a three-body description
of the colliding nuclei [6, 15]: a two-body projectile P made up of a fragment f loosely bound
to a core c impinging on a structureless target T . The two-body structure of the projectile is
described by the phenomenological Hamiltonian

H0 = −
h̄2

2µcf
∆r + Vcf (r), (1)

where r is the c-f relative coordinate, µcf is the c-f reduced mass, and Vcf is a real potential
adjusted to reproduce the binding energy of the fragment to the core and some of the excited
states of the projectile. This potential usually exhibits a Woods-Saxon form factor and may
include a spin-orbit coupling term.

The interaction between the projectile components c and f and the target T are simulated
by the optical potentials VcT and VfT , respectively. Within this three-body framework, studying
reactions involving one-neutron halo nuclei reduces to solve the three-body Schrödinger equation

[
−
h̄2

2µ
∆R +H0 + VcT (r,R) + VfT (r,R)

]
Ψ(r,R) = EtotΨ(r,R), (2)

where R is the P -T relative coordinate, µ is the P -T reduced mass and

Etot = E0 +
h̄2K2

2µ
(3)

is the total energy of the system, with E0 the (negative) energy of the projectile ground state
φl0j0m0

and h̄K the initial P -T relative momentum. The quantum numbers l0, j0 and m0



correspond to the c-f orbital angular momentum, the projectile total angular momentum and
its projection, respectively.

To describe a reaction in which the halo nucleus P impinges on the target T , Eq. (2) is solved
with the initial condition

Ψ(m0)(r, b, Z) −→
Z→−∞

eiKZφl0j0m0
, (4)

where the dependence upon the transverse b and longitudinal Z components of R is made
explicit. Equation (2) must be solved for each value of b and of m0.

At sufficiently high incident energy, the eikonal approximation can be performed to ease the
resolution of Eq. (2). That approximation consists in assuming that most of the rapid variation
of Ψ in the P -T relative coordinate R is included in the plane wave eiKZ , i.e. that the three-
body wave function is well approximated by that plane wave times a function Ψ̂ that does not
vary much with R:

Ψ(r, b, Z) = eiKZΨ̂(r, b, Z). (5)

Including the eikonal ansatz (5) within Eq. (2) leads to

[
−
h̄2

2µ
∆R − i

h̄2K

µ

∂

∂Z
+

h̄2K2

2µ
+H0 + VcT (r,R) + VfT (r,R)

]
Ψ̂(r,R) = EtotΨ̂(r,R). (6)

Since Ψ̂ varies smoothly with R, its second-order derivative ∆RΨ̂ can be neglected in front of its

first-oder derivative K∂/∂ZΨ̂. Then, considering the energy conservation (3), the three-body
Schrödinger equation (6) reduces to the DEA equation [11, 14]

ih̄v
∂

∂Z
Ψ̂(r,R) = [H0 − E0 + VcT (r,R) + VfT (r,R)] Ψ̂(r,R), (7)

with v = h̄K/µ the initial P -T relative velocity. This equation is mathematically equivalent to a
time-dependent Schrödinger equation with straight-line trajectories posing Z = vt. It can thus
been solved using appropriate algorithms, such as the one described in Ref. [16]. However, since
the DEA does not assume any semiclassical treatment of the P -T relative motion, b and Z are
quantal variables. This implies that the DEA includes quantal interferences such as between
different trajectories, which are missing in time-dependent models [14]. The DEA therefore
significantly improves these models.

The DEA differs also from what is usually called the eikonal approximation [15]. In its usual
form, the eikonal approximation includes a subsequent adiabatic approximation to Eq. (7) in
which the excitation energy of the projectile is neglected, i.e. H0 − E0 ≈ 0. In that case, the
solution of Eq. (7) is approximated by the eikonal form factor

Ψ̂
(m0)
eik (r, b, Z → ∞) = eiχ(r,b)φl0j0m0

(r), (8)

where the eikonal phase reads

χ(r, b) = −
1

h̄v

∫ ∞

−∞
[VcT (r, b, Z) + VfT (r, b, Z)]dZ. (9)

The DEA thus improves the usual eikonal approximation by including dynamical effects that
are otherwise neglected. These effects may be very significant such as in Coulomb breakup, for
which the usual eikonal approximation diverges [14].



The DEA has been used successfully to describe elastic scattering and breakup of one-neutron
halo nuclei on both light and heavy targets [14]. This approximation has also provided a reliable
description of the Coulomb breakup of the one-proton halo nucleus 8B [17]. More recently, a
comparison of various reaction models has shown that the DEA is in excellent agreement with
CDCC at intermediate energies [18] while being much less demanding on a computational point
of view. The DEA is thus the most efficient model to study reactions involving one-neutron halo
nuclei at intermediate energies. Moreover as it describes simultaneously both elastic scattering
and breakup, the DEA is ideal for the present study.

2.2. Angular distributions and their near/far decompositions
Within the DEA, the angular distribution for elastic scattering, i.e. the elastic-scattering cross
section, reads [14]

dσel
dΩ

= K2 1

2j0 + 1

∑

m0m′

0

∣∣∣∣
∫ ∞

0
bdbJ|m′

0
−m0|(qb)S

(m0)
m′

0

(b)

∣∣∣∣
2

, (10)

where Jµ is a Bessel function [19], q = 2K sin θ/2 is the transferred momentum and

S
(m0)
m′

0

(b) = 〈φl0j0m′

0
|Ψ̂(m0)(b, Z → ∞)〉 − δm′

0
m0

. (11)

To have a better insight into the reaction mechanism that takes place during the scattering
of the projectile by the target, we perform a near/far decomposition of the elastic-scattering
cross section (10) [12, 13]. The idea behind this decomposition is to express the Bessel function
as the sum of two Hankel functions [19]:

Jµ(z) =
1

2

[
H(1)

µ (z) +H(2)
µ (z)

]
. (12)

The elastic-scattering cross section can then be expressed as the sum of two terms obtained by

substituting Jµ by either H
(1)
µ /2 or H

(2)
µ /2 in Eq. (10). The former is called the Far side (F) of

the angular distribution (10), while the latter is its Near side (N):

dσF,N
el

dΩ
= K2 1

2j0 + 1

∑

m0m′

0

∣∣∣∣
∫ ∞

0
bdbH

(1,2)
|m′

0
−m0|

(qb)S
(m0)
m′

0

(b)

∣∣∣∣
2

. (13)

Since these two terms add coherently to form the elastic-scattering cross section, they may
interfere when they reach similar magnitude, which explains some of the oscillatory patterns
observed in angular distributions [13].

The physics behind this decomposition can be understood from the asymptotic behaviour of
the Hankel functions:

H(1,2)
µ −→

z→∞

√
2

πz
e±i(z−µπ/2−π/4). (14)

Since q ≈ Kθ, the N side corresponds to the positive deflection i.e. repulsive forces (see Fig. 1).
On the contrary the F side carries information about negative deflection, i.e. attractive forces.

The angular distribution for the breakup of the projectile can also be computed within
the DEA [14]. It corresponds to the breakup cross section expressed as a function of the
scattering angle Ω ≡ (θ, ϕ) of the c-f centre of mass after dissociation at a c-f relative energy
E = h̄2k2/2µcf . It reads

dσbu
dEdΩ

=
2µcfKK ′

πh̄2k

1

2j0 + 1

∑

m0

∑

ljm

∣∣∣∣
∫ ∞

0
bdbJ|m−m0|(qb)S

(m0)
kljm(b)

∣∣∣∣
2

, (15)
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Figure 1. Schematic illustration of the Near and Far sides of the angular distribution.

where

S
(m0)
kljm(b) = 〈φkljm|Ψ̂(m0)(b, Z → ∞)〉, (16)

with φkljm the continuum wave function describing the broken up projectile in partial wave ljm.
To study the breakup process, we extend the N/F analysis to the angular distribution (15). As

for the elastic scattering, the Bessel function is decomposed into the sum of two Hankel functions
(12), which provide both N and F sides of the breakup cross section with the same interpretation,
i.e. the contribution to breakup of the repulsive and attractive forces, respectively.

3. Elastic scattering

3.1. 11Be on Pb at 69AMeV
As a first step in our analysis, we study the elastic scattering of 11Be on Pb at 69AMeV.
As mentioned earlier, 11Be is the archetypical one-neutron halo nucleus. In our analysis, it
is described as a 10Be core in its 0+ ground state to which one-neutron is loosely bound. We
choose for the 10Be-n interaction the potential developed in Ref. [20], which reproduces the 1/2+

ground state in the 1s1/2 partial wave at 504 keV below the one-neutron separation threshold.
This potential also reproduces the 1/2− bound excited state in the 0p1/2 orbital and the 5/2+

resonance in the d5/2 partial wave. We use the numerical parameters and the potentials VcT

and VfT detailed in Ref. [14]. The numerical technique used to solve the DEA equation (7) is
explained in Ref. [16]

The DEA elastic-scattering cross section is plotted in Fig. 2 as a ratio to Rutherford [21]. It
presents a usual shape with a Coulomb rainbow at about 2◦ followed by an exponential drop. At
larger angles, the angular distribution presents significant oscillations. The N/F decomposition
shows that at forward angles the process is fully dominated by the N side, as expected for
a (repulsive) Coulomb-dominated reaction [13]. Note that the forward-angles oscillations (i.e.
below 2◦) are observed in both the total cross section and its N side. The N/F interferences
therefore cannot explain this feature of the angular distribution. At larger angles, i.e. around
8◦, the N and F sides cross, explaining the oscillatory pattern of the total cross section. This
shows in particular that attractive nuclear forces affect the elastic scattering mostly at large
angles, as is expected from semiclassical models.

The whole interpretation of the N/F decomposition is based on the asymptotic behaviour of
the Hankel functions (14). To validate this interpretation, we repeat the calculation of the cross
section, its N and F sides using the asymptotics of the Bessel and Hankel functions. The angular
distributions obtained in this way (dotted lines) are in excellent agreement with the exact ones,
confirming our analysis of this N/F decomposition.
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Figure 2. N/F analysis of the elastic scattering of 11Be on Pb at 69AMeV [21].
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Figure 3. Sensitivity of the elastic-scattering cross section to the P -T interaction (left) and
the extension of the halo (right).

3.2. Influence of P -T interaction
To better apprehend the influence of the choice of P -T interaction on the elastic scattering,
we repeat the calculation with the sole Coulomb term of the nuclear optical potential (i.e. a
point-sphere potential, P-S) and a purely point-point Coulomb interaction (P-P). The dominant
N sides of the corresponding elastic-scattering cross sections are plotted in Fig. 3 (left). This
change of potentials causes dramatic changes in the angular distribution. It mostly modifies
the Coulomb rainbow. As the full optical potentials, the P-S interaction leads to a Coulomb
rainbow, but its location is shifted from 2◦ to about 4◦. On the contrary, no Coulomb rainbow
is observed with the P-P interaction. This confirms that the features of the elastic-scattering
cross section strongly depends on the choice of the optical potentials VcT and VfT .

Interestingly, the change in the elastic scattering cross section cannot be simply related
to a transfer of flux towards the breakup channel, as postulated in Ref. [9]. Although the
elastic scattering increases at large angles from the Coulomb + nuclear potential to the purely
Coulomb interaction (first with P-S and then even more with P-P), the total breakup cross
section increases as well, as shown in Table 1. Since the Coulomb rainbow appears only for the
P -T potentials that account for the extension of the projectile and the target (i.e. the full optical
potential or just its Coulomb component P-S), we now analyse the influence of the extension of
the halo on these distributions.



Iteraction P-P P-S C.+N.
|E0| (MeV) 0.5 0.5 0.5 0.05 5
σbu (b) 2.58 2.10 1.70 23.57 0.07

Table 1. Total breakup cross sections corresponding to the calculations shown in Secs. 3.2 and
3.3 [21].
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Figure 4. N/F decomposition of the breakup angular distribution for 11Be on Pb at 69AMeV.
The 10Be-n relative energy is E = 0.5 MeV.

3.3. Influence of the size of the halo
To study the sensitivity of our results to the size of the halo, we repeat the DEA calculations
adjusting the 10Be-n potential to increase (reduce) the neutron separation energy |E0| of the
11Be-like projectile in order to shrink (resp. expand) its halo. The N side of the elastic-scattering
cross section is plotted as a ratio to Rutherford in Fig. 3 (right).

The slope of the exponential drop after the Coulomb rainbow is sensitive to E0: Reducing
the one-neutron separation energy of the projectile, i.e. expanding its halo, slightly reduces the
elastic-scattering cross section. This effect could therefore be used to get information about the
extension of the halo. However, this dependence remains small in comparison to the influence
of the P -T potential [see Fig. 3 (left)]. There is thus little hope that observing the sole elastic-
scattering cross section could provide unbiased information about the extension of the halo.

Since reducing |E0| increases the breakup cross section (see Table 1), we could believe that the
transfer of flux to the breakup channel explains the change in the elastic-scattering cross section.
However, since this increase is much more significant than the drop in the elastic-scattering cross
section, our analysis confirms that there is no direct link between both effects, as suggested in
Sec. 3.2.

4. Breakup of 11Be on Pb at 69AMeV

To better comprehend the link between angular distributions for elastic scattering and breakup,
we perform the same analysis as in Sec. 3 for the breakup cross section (15). For the breakup of
11Be on Pb at 69AMeV, the angular distribution (solid line) and its N (short-dashed line) and
F (long-dashed line) sides are plotted as a function of the scattering angle θ of the 10Be-n centre
of mass after dissociation [21] (see Fig. 4). The 10Be-n relative energy is E = 0.5 MeV.

The features of the breakup angular distribution are very similar to those of the elastic-
scattering cross section. First, the full calculation exhibits small oscillations at forward angles
before an exponential drop starting at 2◦, which is reminiscent of the Coulomb rainbow observed
in the elastic-scattering cross section (see Fig. 2). Second, at forward angles, the breakup is
dominated by its N side, just as in the elastic scattering. Finally, at larger angles, the total
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Figure 5. Sensitivity of the angular distribution for breakup to the P -T interaction (left) and
the extension of the halo (right).

cross section exhibits oscillations that are explained by interferences between the N and F side,
which cross at about 8◦.

Fig. 5 shows the sensitivity of the breakup cross section to the P -T potential (left) and to
the binding energy of the neutron |E0| (right). The similarity between elastic scattering and
breakup is also observed here. Using the sole Coulomb part of the optical potentials (P-S) shifts
the start of the exponential drop of the breakup cross section to 4◦, as in the elastic-scattering
one [see Fig. 3 (left)], and using the purely point-point Coulomb interaction (P-P) leads to no
rainbow-like behaviour. Note that the larger breakup cross section obtained in the P-P case
(see Table 1) is explained by this absence of Coulomb rainbow in the angular distribution for
breakup. The sensitivity of breakup calculations to the neutron separation energy is also similar
to that observed in the elastic channel. In particular for the slope of the drop after 2◦, which
becomes steeper when |E0| is reduced [see Fig. 3 (right)]. This confirms that there is no direct
link between the drop observed in the elastic-scattering cross section and a possible loss of flux
towards the breakup channel since both angular distributions vary in the same way when either
the P -T interaction or the projectile structure are modified.

As shown in Ref. [22], these similarities can be semi-quantitatively explained within the Recoil
Excitation and Breakup (REB) model developed by Johnson et al [23]. Within this adiabatic
model, the angular distributions elegantly factorise into the product of an elastic-scattering cross
section for a pointlike projectile and a form factor that accounts for the extension of the halo
[23, 22]. The fact that the former appears in both factorisations and that it contains most of
the angular dependence explains the similarity between the angular distributions. That analysis
also suggests a new observable to study more precisely the halo structure. As observed in
Fig. 3 (left) and Fig. 5 (left), the angular distributions are very sensitive to the choice of optical
potentials. Since this sensitivity is very similar in both processes, taking the ratio of two angular
distributions removes most of the dependence on the choice of the P -T potentials. Such a ratio
emphasises the nuclear-structure content of the angular distributions [22].

5. Conclusion and prospect

In this work, we analyse theoretically elastic-scattering and breakup reactions of halo nuclei
through a N/F decomposition of their angular distributions [21]. The calculations are performed
for 11Be, the archetypical one-neutron halo nucleus, impinging on Pb at 69AMeV, which
corresponds to the experimental conditions of Ref. [10]. The calculations are performed with
the DEA, a reliable and accurate reaction model in which elastic scatering and breakup are
described simultaneously [11, 14].

Our analysis shows that at intermediate energy, the angular distribution for breakup is very



similar to the elastic-scattering cross section: Both present a Coulomb rainbow at the same
scattering angle θ, they are both N-side dominated at forward angles, they both exhibit similar
sensitivity to the choice of P -T interaction and to the binding energy of the halo neutron. These
results suggest that the projectile is scattered by the target in a similar way whether it remains
bound or it is broken up. This can be semi-quantitatively understood within the REB model
[22, 23].

The present analysis also suggests that there is no obvious link between the drop observed
in the elastic-scattering cross section and a possible transfer of probability flux towards the
breakup channel, as postulated in Ref. [9]. Since the work of Di Pietro et al has been performed
at lower energy (around the Coulomb barrier), our conclusions cannot be directly transposed to
their study. A similar analysis within the CDCC framework [24] is planned to see how elastic
scattering and breakup are related to each other at low energy. Moreover, recent progresses
having been made in the modelling of reactions involving two-neutron halo nuclei [25, 26], an
extension of this work for Borromean systems is also planned.
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