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The abundances of light elements based on the big bang nucleosynthesis model are calculated using
the Tsallis non-extensive statistics. The impact of the variation of the non-extensive parameter q
from the unity value is compared to observations and to the abundance yields from the standard big
bang model. We find large differences between the reaction rates and the abundance of light elements
calculated with the extensive and the non-extensive statistics. We found that the observations are
consistent with a non-extensive parameter q = 1+0.05

−0.12, indicating that a large deviation from the
Boltzmann-Gibbs statistics (q = 1) is highly unlikely.

I. INTRODUCTION

The cosmological big bang model is in agreement with
many observations relevant for our understanding of the
universe. However, comparison of calculations based on
the model with observations is not straightforward be-
cause the data are subject to poorly known evolutionary
effects and systematic errors. Nonetheless, the model is
believed to be the only probe of physics in the early uni-
verse during the interval from 3−20 min, after which the
temperature and density of the universe fell below that
which is required for nuclear fusion and prevented ele-
ments heavier than beryllium from forming. The model
is inline with the cosmic microwave background (CMB)
radiation temperature of 2.275 K [1], and provides guid-
ance to other areas of science, such as nuclear and parti-
cle physics. Big bang model calculations are also consis-
tent with the number of light neutrino families Nν = 3.
According to the numerous literature on the subject,
the big bang model can accommodate values between
Nν = 1.8 − 3.9 (see, e.g., Ref. [2]). From the measure-
ment of the Z0 width by LEP experiments at CERN one
knows that Nν = 2.9840± 0.0082 [3].

In the big bang model nearly all neutrons end up in
4He, so that the relative abundance of 4He depends on
the number of neutrino families and also on the neutron
lifetime τn. The sensitivity to the neutron lifetime af-
fects Big Bang Nucleosynthesis (BBN) in two ways. The
neutron lifetime τn influences the weak reaction rates be-
cause of the relation between τn and the weak coupling
constant. A shorter (longer) τn means that the reaction
rates remain greater (smaller) than the Hubble expansion
rate until a lower (larger) freeze-out temperature, having
a strong impact on the equilibrium neutron-to-proton ra-
tio at freeze-out. This n/p-ratio is approximately given
in thermal equilibrium by n/p = exp[−∆m/kBT ] ∼ 1/6,
where kB is the Boltzmann constant, T the temperature
at weak freeze-out, and ∆m is the neutron-proton mass
difference. The other influence of τn is due to their de-
cay in the interval between weak freeze-out (t ∼ 1 s)
and when nucleosynthesis starts (t ∼ 200 s), reducing
the n/p ratio to n/p ∼ 1/7. A shorter τn implies lower

the predicted BBN helium abundance. In this work we
will use the value of τn = 878.5 ± 0.7 ± 0.3 s, according
to the most recent experiments [4] (a recent review on
the neutron lifetime is found in Ref. [5]). Recently, the
implications of a change in the neutron lifetime on BBN
predictions have been assessed in Ref. [6].

The baryonic density of the universe deduced from the
observations of the anisotropies of the CMB radiation,
constrains the value of the number of baryons per photon,
η, which remains constant during the expansion of the
universe. Big bang model calculations are compatible
with the experimentally deduced value of from WMAP
observations, η = 6.16± 0.15× 10−10 [7].

Of our interest in this work is the abundances of light
elements in big bang nucleosynthesis. At the very early
stages (first 20 min) of the universe evolution, when
it was dense and hot enough for nuclear reactions to
take place, the temperature of the primordial plasma de-
creased from a few MeV down to about 10 keV, light
nuclides as 2H, 3He, 4He and, to a smaller extent, 7Li
were produced via a network of nuclear processes, re-
sulting into abundances for these species which can be
determined with several observational techniques and in
different astrophysical environments. Apparent discrep-
ancies for the Li abundances in metal poor stars, as mea-
sured observationally and as inferred by WMAP, have
promoted a wealth of new inquiries on BBN and on stellar
mixing processes destroying Li, whose results are not yet
final. Further studies of light-element abundances in low
metallicity stars and extragalactic H II regions, as well as
better estimates from BBN models are required to tackle
this issue, integrating high resolution spectroscopic stud-
ies of stellar and interstellar matter with nucleosynthesis
models and nuclear physics experiments and theories [8].

The Maxwell-Boltzmann distribution of the kinetic en-
ergy of the ions in a plasma is one of the basic inputs for
the calculation of nuclear reaction rates during the BBN.
The distribution is based on several assumptions inherent
to the Boltzmann-Gibbs statistics: (a) the collision time
is much smaller than the mean time between collisions,
(b) the interaction is local, (c) the velocities of two par-
ticles at the same point are not correlated, and (d) that

ar
X

iv
:1

20
5.

40
00

v2
  [

nu
cl

-t
h]

  1
3 

Fe
b 

20
13



2

energy is locally conserved when using only the degrees of
freedom of the colliding particles (no significant amount
of energy is transferred to and from collective variables
and fields). If (a) and (b) are not valid the resulting effec-
tive two-body interaction is non-local and depends on the
momentum and energy of the particles. Even when the
one-particle energy distribution is Maxwellian, additional
assumptions about correlations between particles are nec-
essary to deduce that the relative-velocity distribution is
also Maxwellian. Although the Boltzmann-Gibbs (BG)
description of statistical mechanics is well established in
a seemingly infinite number of situations, in recent years
an increasing theoretical effort has concentrated on the
development of alternative approaches to statistical me-
chanics which includes the BG statistics as a special limit
of a more general theory [9] (see also, [10]). Such theories
aim to describe systems with long range interactions and
with memory effects (or non-ergodic systems). A very
popular alternative to the BG statistics was proposed
by C. Tsallis [9, 11], herewith denoted as non-extensive
statistics (for more details on this subject, see the exten-
sive reviews [11–13]). Statistical mechanics assumes that
energy is an “extensive” variable, meaning that the total
energy of the system is proportional to the system size;
similarly the entropy is also supposed to be extensive.
This might be justified due to the short-range nature
of the interactions which hold matter together. But if
one deals with long-range interactions, most prominently
gravity; one can then find that entropy is not extensive
[14–18].

In classical statistics, to calculate the average values
of some quantities, such as the energy of the system, the
number of molecules, the volume it occupies, etc, one
searches for the probability distribution which maximizes
the entropy, subject to the constraint that it gives the
right average values of those quantities. As mentioned
above, Tsallis proposed to replace the usual (BG) en-
tropy with a new, non-extensive quantity, now commonly
called the Tsallis entropy, and maximize that, subject to
the same usual constraints. There is actually a whole infi-
nite family of Tsallis entropies, indexed by a real-valued
parameter q, which quantifies the degree of departure
from extensivity (one gets the usual entropy back again
when q = 1). It was shown in many circumstances that
the classical results of statistical mechanics can be trans-
lated into the new theory [13]. The importance of these
families of entropies is that, when applied to ordinary
statistical mechanics, they give rise to probabilities that
follow power laws instead of the exponential laws of the
standard case (for details on this see [13]). In most cases
that Tsallis formalism is adopted, e.g. Ref. [19], the
non-extensive parameter q is taken to be constant and
close to the value for which ordinary statistical mechan-
ics is obtained (q = 1). Some works have also probed
sizable deviations of the non-extensive parameter q from
the unity to explain a variety of phenomena in several
areas of science [11].

In the next sections, we shown that the Maxwell-

Boltzmann distribution, a cornerstone of the big bang
and stellar evolution nucleosynthesis, is strongly mod-
ified by the non-extensive statistics if q strongly devi-
ates from the unity. As a consequence, it also affects
strongly the predictions of the BBN. There is no “a pri-
ori” justification for a large deviation of q from the unity
value during the BBN epoch. In particular, as radiation
is assumed to be in equilibrium with matter during the
BBN, a modification of the Maxwell distribution of ve-
locities would also impact the Planck distribution of pho-
tons. Recent studies on the temperature fluctuations of
the cosmic microwave background (CMB) radiation have
shown that a modified Planck distribution based on Tsal-
lis statistics adequately describes the CMB temperature
fluctuations measured by WMAP with q = 1.045±0.005,
which is close to unity but not quite [20]. Perhaps more
importantly, Gaussian temperature distributions based
on the BG statistics, corresponding to the q → 1 limit,
do not properly represent the CMB temperature fluctu-
ations [20]. Such fluctuations, allowing for even larger
variations of q might occur during the BBN epoch, also
leading to a change of the exponentially decaying tail of
the Maxwell velocity distribution.

Based on the successes of the big bang model, it is fair
to assume that it can set strong constraints on the limits
of the parameter q used in a non-extensive statistics de-
scription of the Maxwell-Boltzmann velocity distribution.
In the literature, attempts to solve the lithium problem
has assumed all sorts of “new physics” [8]. The present
work adds to the list of new attempts, although our re-
sults imply a much wider impact on BBN as expected
for the solution of the lithium problem. If the Tsallis
statistics appropriately describes the deviations of tails
of statistical distributions, then the BNN would effec-
tively probe such tails. The Gamow window (see figure
1) contains a small fraction of the total area under the
velocity distribution. Thus, only a few particles in the
tail of the distributions contribute to the fusion rates.
In fact, the possibility of a deviation of the Maxwellian
distribution and implications of the modification of the
Maxwellian distribution tail for nuclear burning in stars
have already been explored in the past [21–24]. As we
show in the next sections, a strong deviation from q = 1
is very unlikely for the BNN predictions, based on com-
parison with observations. Moreover, if q deviates from
the unity value, the lithium problem gets even worse.

II. MAXWELLIAN AND NON-MAXWELLIN
DISTRIBUTIONS

Nuclear reaction rates in the BBN and in stelar evolu-
tion are strongly dependent of the particle velocity dis-
tributions. The fusion reaction rates for nuclear species
1 and 2 is given by 〈σv〉12, i.e., an average of the fusion
cross section of 1+2 with their relative velocity, described
by a velocity distribution. It is thus worthwhile to study
the modifications of the stellar reaction rates due to the
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modifications introduced by the non-extensive statistics.

A. Non-extensive Statistics

Statistical systems in equilibrium are described by the
Boltzmann-Gibbs entropy,

SBG = −kB
∑
i

pi ln pi, (1)

where kB is the Boltzmann constant, and pi is the proba-
bility of the i-th microstate. For two independent systems
A, B, the probability of the system A+B being in a state
i + j, with i a microstate of A and j a microstate of B,
is

pA+B
i+j = pAi · pBj . (2)

Therefore, the Boltzmann-Gibbs entropy satisfies the re-
lation

SA+B = SA + SB . (3)

Thus, the entropy based on the Boltzmann-Gibbs statis-
tic is an extensive quantity.

In the non-extensive statistics [9], one replaces the tra-
ditional entropy by the following one:

Sq = kB
1−

∑
i p
q
i

q − 1
, (4)

where q is a real number. For q = 1, Sq = SBG. Thus,
the Tsallis statistics is a natural generalization of the
Boltzmann-Gibbs entropy.

Now it follows that

Sq(A+B) = Sq(A) + Sq(B) +
(1− q)
kB

Sq(A)Sq(B). (5)

The variable q is a measure of the non-extensivity. Tsal-
lis has shown that a formalism of statistical mechanics
can be consistently developed in terms of this general-
ized entropy [13].

A consequence of the non- extensive formalism is that
the distribution function which maximizes Sq is non-
Maxwellian [25–27]. For q = 1, the Maxwell distribu-
tion function is reproduced. But for q < 1, high energy
states are more probable than in the extensive case. On
the other hand, for q > 1 high energy states are less
probable than in the extensive case, and there is a cutoff
beyond which no states exist.

B. Maxwellian Distribution

In stars, the thermonuclear reaction rate with a
Maxwellian distribution is given by [28]

Rij =
NiNj
1 + δij

〈σv〉 =
NiNj
1 + δij

(
8

πµ

) 1
2
(

1

kBT

) 3
2

×
∫ ∞
0

dES(E) exp

[
−
(

E

kBT
+ 2πη(E)

)]
, (6)

where σ is the fusion cross section, v is the relative veloc-
ity of the ij-pair, Ni is the number of nuclei of species i,
µ is the reduced mass of i+j, T is the temperature, S(E)
is the astrophysical S-factor, and η = ZiZje

2/h̄v is the
Sommerfeld parameter, with Zi the i-th nuclide charge
and E = µv2/2 is the relative energy of i+ j.

The energy dependence of the reaction cross sections
is usually expressed in terms of the equation

σ(E) =
S(E)

E
exp [−2πη(E)] . (7)

We write 2πη = b/
√
E, where

b = 0.9898ZiZj
√
A MeV1/2, (8)

where A is the reduced mass in amu. The factor 1 + δij
in the denominator of Eq. (6) corrects for the double-
counting when i = j. The S-factor has a relatively weak
dependence on the energy E, except when it is close to a
resonance, where it is strongly peaked.

C. Non-Maxwellian Distribution

The non-extensive description of the Maxwell-
Boltzmann distribution corresponds to the substitution
f(E)→ fq(E), where [13]

fq(E) =

[
1− q − 1

kBT
E

] 1
q−1

q→1−→ exp

(
− E

kBT

)
, 0 < E <∞. (9)

If q − 1 < 0, Eq. (9) is real for any value of E ≥ 0.
However, if q− 1 > 0, f(E) is real only if the quantity in
square brackets is positive. This means that

0 ≤ E ≤ kBT

q − 1
, if q ≥ 1

0 ≤ E, if q ≤ 1. (10)

Thus, in the interval 0 < q < 1 one has 0 < E <∞ and
for 1 < q <∞ one has 0 < E < Emax = kBT/(q − 1).

With this new statistics, the reaction rate becomes

Rij =
NiNj
1 + δij

Iq, (11)

and the rate integral, Iq, is given by

Iq =

∫ Emax

0

dES(E)Mq(E, T ), (12)



4

0.1 0.2 0.3 0.4 0.5

E (MeV)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
M

q

q=2

q=1

q=0.5

2 H(d,p)3 H
T9 =1

Figure 1: Modified Gamow distributions Mq(E, T ) of
deuterons relevant for the reaction 2H(d,p)3H at T9 = 1. The
solid line, for q = 1, corresponds to the use of a Maxwell-
Boltzmann distribution. Also shown are the results when us-
ing non-extensive distributions for q = 0.5 (dotted line) and
q = 2 (dashed line).

where the “modified” Gamow energy distribution is

Mq(E, T ) = A(q, T )

(
1− q − 1

kBT
E

) 1
q−1

e−b/
√
E

= A(q, T )

(
1− q − 1

0.08617T9
E

) 1
q−1

× exp

[
−0.9898ZiZj

√
A

E

]
(13)

is the non-extensive Maxwell velocity distribution,
Emax = ∞ for 0 < q < 1 and Emax = kBT/(1 − q)
for 1 < q < ∞, and E in MeV units. A(q, T ) is a nor-
malization constant which depends on the temperature
and the non-extensive parameter q.

D. Non-Maxwellian distribution for relative
velocities

It is worthwhile to notice that if the one-particle energy
distribution is Maxwellian, it does not necessarily imply
that the relative velocity distribution is also Maxwellian.
Additional assumptions about correlations between par-
ticles are necessary to deduce that the relative-velocity
distribution, which is the relevant quantity for rate cal-
culations, is also Maxwellian. This has been discussed in
details in Refs. [9, 21, 29] where non-Maxwellian distri-
butions, such as in Eq. (13), were shown to arise from
non-extensive statistics.

Here we show that, if the non-Maxwellian particle ve-
locity distribution is given by Eq. (9), then a two-particle
relative can be modified to account for the center of mass
recoil. Calling the kinetic energy of a particle Ei, this

distribution is given by

f (i)q =

(
1− q − 1

kT
Ei

) 1
q−1

→ exp

[
−
(
Ei
kT

)]
(14)

The two-particle energy distribution is f
(1)
q f

(2)
q . We

now exponentiate the Tsallis distribution.

f (i)q = exp

{
1

q − 1

[
ln

(
1− q − 1

kT
Ei

)]}
(15)

and the product f
(12)
q = f

(1)
q f

(2)
q reduces to

f (12)q = exp

{
1

q − 1

[
ln

(
1− q − 1

kT
E1

)(
1− q − 1

kT
E2)

)]}
(16)

Since Ei = miv
2
i /2, and thus, E1 + E2 = µv2/2 +

MV 2/2, where µ is the reduced mass of the two particles,
M = m1+m2, v is the relative velocity, and V the center
of mass velocity, the product inside the natural logarithm
can be reduced to

1− 1− q
kT

(
µv2

2
+
MV 2

2

)
+

(
1− q
kT

)2
µv2

2

MV 2

2

=

(
1− 1− q

kT

µv2

2

)(
1− 1− q

kT

MV 2

2

)
(17)

Thus, the two-body distribution factorizes into a prod-
uct of relative and center of mass parts

f (12)q (v, V, T ) = f (rel)q (v, T )f (cm)
q (V, T ) (18)

where

f (rel)q (v, T ) = Arel(q, T )

(
1− 1− q

kT

µv2

2

) 1
q−1

f (cm)
q (V, T ) = Acm(q, T )

(
1− 1− q

kT

MV 2

2

) 1
q−1

,(19)

with the normalization constants obtained from the con-
dition, ∫

d3vd3V f (12)q (v, V, T ) = 1. (20)

Because the distribution factorizes, the unit normaliza-
tion can be achieved for the relative and c.m. distribu-
tions separately. The distribution needed in the reaction
rate formula is, therefore,

fq(v, T ) =

∫
d3V f (12)q (v, V, T ) = f (rel)q (v, T ), (21)

which attains the same form for as the absolute distribu-
tion.

In the limit q → 1 the two-particle distribution reduces
to a Gaussian, with the last term in the left-hand-side of
Eq. (17) dropping out,

f (12)q = A(q, T ) exp

{[
−
(
µv2/2 +MV 2/2

kT

)]}
, (22)

as expected.
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Figure 2: The relative difference ratio (n±q −n±)/n± between
non-extensive, nq, and extensive, n = nq→1, statistics. Solid
curves are for Fermi-Dirac statistics, n+, and dashed curves
are for Bose-Einstein statistics, n−. For both distributions,
we use µ = 0. Results are shown for q = 2 and q = 0.5, with
T9 = 10.

E. Equilibrium with electrons, photons and
neutrinos

One of the important questions regarding a plasma
with particles (i.e., nuclei) described by the non-extensive
statistics is how to generalize Fermi-Dirac, Bose-Einstein,
and Tsallis statistics, to become more unified statistics
with the distribution for the particles. This has been
studied in Ref. [30], where it was shown that a simi-
lar non-extensive statistic for the distribution can be ob-
tained for fermions and bosons is given by

n±q (E) =
1[

1− (q − 1) (E−µ)
kT

] 1
q−1 ± 1

, (23)

where µ is the chemical potential. This reproduces
the Fermi distribution, n+, for q → 1 and the Bose-
Einstein distribution for photons, n−, for µ = 0 and
q → 1. Planck’s law for the distribution of radiation is
obtained by multiplying n− in Eq. (23) (with µ = 0)
by h̄ω2/(4π2c2), where E = h̄ω. The number den-
sity of electrons can be obtained from n+ in Eq. (23)
with the proper phase-factors depending if the electrons
are non-relativistic or relativistic. Normalization factors
A±(q, T ) also need to be introduced, as before.

The electron density during the early universe varies
strongly with the temperature. At T9 = 10 the electron
density is about 1032/cm3, much larger than the elec-
tron number density at the center of the sun, nsune ∼
1026/cm3. The large electron density is due to the e+e−

production by the abundant photons during the BBN.
However, the large electron densities do not influence

the nuclear reactions during the BBN. In fact, the en-
hancement of the nuclear reaction rates due to electron
screening were shown to be very small [31]. The electron
Fermi energy for these densities are also much smaller
than kT for the energy relevant for BBN, so that one can
also use µ = 0 in Eq. (23) for n+.

In figure 2 we plot the the relative difference ratio (n±q −
n±)/n± between non-extensive, nq, and extensive, n =
nq→1, statistics. For both distributions, we use µ = 0.
The solid curves are for Fermi-Dirac (FD) statistics, n+,
and dashed curves are for Bose-Einstein (BE) statistics,
n−. We show results for q = 2 and q = 0.5, with T9 =
10. One sees that the non-extensive distributions are
enhanced for q > 1 and suppressed for q < 1, as compared
to the respective FD and BE quantum distributions. The
deviations for the FD and BE statistics also grow larger
with the energy. For example, the non-extensive electron
distribution is roughly a factor 2 larger than the usual
FD distribution at Ee = 1 MeV, at T9 = 10.

While we don’t obtain numerical results with modified
Fermi-Dirac and Bose-Einstein distributions here, it can
be expected that these generalizations will have a strong
influence on the freezout temperature and the neutron
to proton, n/p, ratio. A numerical study of this prob-
lem may be presented in another paper. The freezout
temperature, occurs when the rate, Γ ∼ 〈σv〉, for weak
reaction νe + n → p + e− becomes slower than the ex-
pansion rate of the Universe. Because during the BBN
the densities of all particles, including neutrinos, are low
compared to kT , the chemical potential µ can be set to
zero in the calculation of all reaction rates. The adop-
tion of non-extensive quantum distributions such as in
Eq. (23) will lead to the same powers of the tempera-
ture as those predicted by the FD distribution and the
Bose-Einstein distribution. For example, Planck law for
the total blackbody is U ∝ T 4, being form invariant with
respect to non-extensivity entropic index q which deter-
mines the the degree of non-extensivity [32]. This result
means that the weak decay reaction rates do not depend
on the non-extensive parameter q. The freezout temper-
ature and n/p ratio remain the same as before.

More detailed studies have indicated that Planck’s law
of blackbody radiation and other thermodynamical quan-
tities arising from non-extensive quantum statistics can
yield different powers of temperature than for the non-
extensive case [33–36]. If that is the case, then a study
of the influence of non-extensive statistics on the weak-
decay rates and electromagnetic processes during BBN is
worth pursuing.

F. Thermodynamical equilibrium

The physical appeal for non-extensivity is the role
of long-range interactions, which also implies non-
equilibrium. Accepting non-extensive entropy means
abandoning the most important concept of thermody-
namics, namely the tendency of any system to reach
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equilibrium. This also means that the concept of non-
extensivity means renouncing to the second law of ther-
modynamics altogether!

The comments above, which seem to be shared by part
of the community (see, e.g., [34, 37–41]), are worrisome
when one has to consider a medium composed of parti-
cles obeying classical and quantum statistics. It is not
clear for example if the non-extensive parameter q has
to be the same for all particle distributions, both classi-
cal and quantum. Even worse is the possibility that the
temperatures are not the same for the different particle
systems in the plasma.

In the present work, we will avoid a longer discussion
on the validity of the Tsallis statistics for a plasma such
as that existing during the BBN. We will only consider
the effect of its use for calculating nuclear reaction rates
in the plasma, assuming that it can be described by a
classical distribution of velocities. This study will allow
us to constrain the non-extensive parameter q based on
a comparison with observations.

III. REACTION RATES DURING BIG BANG
NUCLEOSYNTHESIS

Based on the abundant literature on non-extensive
statistics (see, e.g., [9, 21–24]), we do not expect that
the non-extensive parameter q differs appreciably from
the unity value. However, in order to study the influence
of a non-Maxwellian distribution on BBN we will explore
values of q rather different than the unity, namely, q = 0.5
and q = 2. This will allow us to pursue a better un-
derstanding of the nature of the physics involved in the
departure from the BG statistics. In figure 1 we plot the
Gamow energy distributions of deuterons relevant for the
reaction 2H(d,p)3H at T9 = 1. The solid line, for q = 1,
corresponds to the use of the Maxwell-Boltzmann distri-
bution. Also shown are results for non-extensive distri-
butions for q = 0.5 (dotted line) and q = 2 (dashed line).
One observes that for q < 1, higher kinetic energies are
more accessible than in the extensive case (q = 1). For
q > 1 high energies are less probable than in the exten-
sive case, and there is a cutoff beyond which no kinetic
energy is reached. In the example shown in the figure for
q = 2, the cutoff occurs at 0.086 MeV, or 86 keV.

We will explore the modifications of the BBN elemen-
tal abundances due to a variation of the non-extensive
statistics parameter q. We will express our reaction rates
in the form NA〈σv〉 (in units of cm3 mol−1 s−1), where
NA is the Avogadro number and 〈σv〉 involves the in-
tegral in Eq. (6) with the Maxwell distribution f(E)
replaced by Eq. (9). First we show how the reaction
rates are modified for q 6= 1.

In figure 3 we show the S-factor for the reaction
2H(d,p)3H as a function of the relative energy E. Also

10-2 10-1 100

E (MeV)
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100
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(M

e
V

 b
)

2 H(d,p)3 H

10-2 10-1 100 101 102

T9

Figure 3: S-factor for the reaction 2H(d,p)3H as a function of
the relative energy E and of the temperature T9. The data
are from Refs. [42–46]. The solid curve is a polynomial fit to
the experimental data.
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Figure 4: Reaction rates for 2H(d,p)3H as a function of the
temperature T9 for different values of the non-extensive pa-
rameter q. The rates are given in terms of the natural loga-
rithm of NA〈σv〉 (in units of cm3 mol−1 s−1). Results with
the use of non-extensive distributions for q = 0.5 (dotted line)
and q = 2 (dashed line) are shown.

shown is the dependence on T9 (temperature in units of
109 K) for the effective Gamow energy

E = E0 = 0.122(Z2
i Z

2
jA)1/3T

2/3
9 MeV, (24)

where A is the reduced mass in amu. The data are from
Refs. [42–46] and the solid curve is a chi-square polyno-
mial function fit to the data.

Using the chi-square polynomial fit obtained to fit the
data presented in figure 3, we show in figure 4 the reac-
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tion rates for 2H(d,p)3H as a function of the tempera-
ture T9 for two different values of the non-extensive pa-
rameter q. The integrals in equation (12) are performed
numerically. For charge particles, a good accuracy (witi-
hin 0.1%) is reached using the integration limits between
E0−5∆E and E0+5∆E, where ∆E is given by Eq. (25)
below. The rates are expressed in terms of the natural
logarithm of NA〈σv〉 (in units of cm3 mol−1 s−1). The
solid curve corresponds to the usual Maxwell-Boltzmann
distribution, i.e., q = 1. The dashed and dotted curves
are obtained for q = 2 and q = 0.5, respectively. In both
cases, we see deviations from the Maxwellian rate. For
q > 1 the deviations are rather large and the tendency
is an overall suppression of the reaction rates, specially
at low temperatures. This effect arises from the non-
Maxwellian energy cutoff which for this reaction occurs
at 0.086T9 MeV and which prevents a great number of
reactions to occur at higher energies.

10-2 10-1 100 101

E (MeV)

10-1

100

S
  
(M

e
V

 b
)

7 Li(p,α)4 He

10-2 10-1 100 101 102

T9

Figure 5: S-factor for the reaction 7Li(p,α)4He as a function
of the relative energy E and of T9. The data are from Refs.
[47–57]. The solid curve is a chi-square function fit to the
data using a sum of polynomials plus Breit-Wigner functions.

For q < 1 the nearly similar result as with the Maxwell-
Boltzmann distribution is due to a competition between
suppression in reaction rates at low energies and their
enhancement at high energies. The relevant range of en-
ergies is set by the Gamow energy which for a Maxwellian
distribution is given by Eq. (24) and by the energy win-
dow,

∆E = 0.2368(Z2
i Z

2
jA)1/6T

5/6
9 MeV, (25)

which for the reaction 2H(d,p)3H amounts to 0.2368T
5/6
9

MeV. This explains why, at T9 = 1, the range of rele-
vant energies for the calculation of the reaction rate is

shown by the solid curve in figure 1. For q < 1 the
Gamow window ∆E is larger and there is as much a con-
tribution from the suppression of reaction rates at low
energies compared to the Maxwell-Boltzmann distribu-
tion, as there is a corresponding enhancement at higher
energies. This explains the nearly equal results shown in
figure 4 for q = 1 and q < 1. This finding applies to
all charged particle reaction rates, except for those when
the S-factor has a strong dependence on energy at, and
around, E = E0. But no such behavior exists for the
most important charged induced reactions in the BBN
(neutron-induced reactions will be discussed separately).

10-1 100 101

T9

0

5

10

15

20

ln
(N

A

〈 σv〉
)

7 Li(p,α)4 He

q=1

q=2

q=0.5

Figure 6: Reaction rates for 7Li(p,α)4He as a function of the
temperature T9 for two different values of the non-extensive
parameter q. The rates are given in terms of the natural
logarithm of NA〈σv〉 (in units of cm3 mol−1 s−1). Results
with the use of non-extensive distributions for q = 0.5 (dotted
line) and q = 2 (dashed line) are shown.

The findings described above for the reaction
2H(d,p)3H are not specific but apply to all charged par-
ticles of relevance to the BBN. We demonstrate this with
one more example: the 7Li(p,α)4He reaction, responsi-
ble for 7Li destruction. In figure 5 we show the S-factor
for this reaction as a function of the relative energy E.
One sees prominent resonances at higher energies. Also
shown in the figure is the dependence of the reaction on
T9. The data are from Refs. [47–57] and the solid curve
is a chi-square function fit to the data using a sum of
polynomials plus Breit-Wigner functions.

Using the chi-square function fit obtained to fit the
data presented in figure 5, we show in figure 6 the re-
action rates for 7Li(p,α)4He as a function of the tem-
perature T9 for two different values of the non-extensive
parameter q. The rates are given in terms of the natural
logarithm of NA〈σv〉 (in units of cm3 mol−1 s−1). The
solid curve corresponds to the usual Maxwell-Boltzmann
distribution, i.e., q = 1. The dashed and dotted curves
are obtained for q = 2 and q = 0.5, respectively. As with
the reaction presented in figure 4, in both cases we see
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deviations from the Maxwellian rate. But, as before, for
q = 2 the deviations are larger and the tendency is a
strong suppression of the reaction rates as the temper-
ature decreases. It is interesting to note that the non-
Maxwellian rates for q = 0.5 are more sensitive to the
resonances than for q > 1. This is because, as seen in
figure 1, for q < 1 the velocity distribution is spread
to considerably larger values of energies, being therefore
more sensitive to the location of high energy resonances.

0.01 0.02 0.03 0.04 0.05

10-2

10-1

100

M
q

q=2

q=0.5

q=1

T9 =0.1

0.2 0.4 0.6 0.8 1.0 1.2 1.4

E (MeV)

10-2

10-1

100

M
q

p(n,γ)d

T9 =10

Figure 7: Spectral function Mq(E, T ) for protons and neu-
trons relevant for the reaction p(n,γ)d at T9 = 0.1 (upper
panel) and T9 = 10 (lower panel). The solid line, for q = 1,
corresponds to the usual Boltzmann distribution. Also shown
are non-extensive distributions for q = 0.5 (dotted line) and
q = 2 (dashed line).

We now turn to neutron induced reactions, which are
only a few cases of high relevance for the BBN, notably
the p(n,γ)d, 3He(n,p)t, and 7Be(n,p)7Li reactions. For
neutron induced reactions, the cross section at low ener-
gies is usually proportional to 1/v, where v =

√
2mE/h̄

is the neutron velocity. Thus, it is sometimes appropriate
to rewrite Eq. (7) as

σ(E) =
S(E)

E
=
R(E)√
E

(26)

where R(E) is a slowly varying function of energy simi-
lar to an S-factor. The distribution function within the
reaction rate integral (12) is also rewritten as

Mq(E, T ) = A(q, T )fq(E) = A(q, T )

(
1− q − 1

kBT
E

) 1
q−1

.

(27)

The absence of the tunneling factor exp(−b/
√
E) in Eq.

(27) inhibts the dependence of the reaction rates on the
non-extensive parameter q.

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

E (MeV)

1

2
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R
  
(M

e
V

1
/
2
 b

)

7 Be(n,p)7 Li

Figure 8: The energy dependence of R(E) = S(E)
√
E for the

reaction 7Be(n,p)7Li. is shown in figure 8. The experimental
data were collected from Refs. [58–62]. The solid curve is a
function fit to the experimental data using a set of polynomi-
als and Breit-Wigner functions.

In figure 7 we plot the kinetic energy distributions of
nucleons relevant for the reaction p(n,γ)d at T9 = 0.1
(upper panel) and T9 = 10 (lower panel). The solid line,
for q = 1, corresponds to the usual Boltzmann distribu-
tion. Also shown are results for the non-extensive dis-
tributions for q = 0.5 (dotted line) and q = 2 (dashed
line). One observes that, as for the charged particles
case, with q < 1 higher kinetic energies are more proba-
ble than in the extensive case (q = 1). With q > 1 high
energies are less accessible than in the extensive case,
and there is a cutoff beyond which no kinetic energy is
reached. A noticeable difference form the case of charged
particles is the absence of the Coulomb barrier and a cor-
respondingly lack of suppression of the reaction rates at
low energies. As the temperature increases, the relative
difference between the Maxwell-Boltzmann and the non-
Maxwellian distributions decrease appreciably. This will
lead to a rather distinctive pattern of the reaction rates
for charged compared to neutron induced reactions.

For neutron-induced reactions, a good accuracy
(within 0.1%) for the numerical calculation of the reac-
tion rates with Eq. (12) is reached using the integration
limits between E = 0 and E = 20kBT . As an example
we will now consider the reaction 7Be(n,p)7Li. The en-

ergy dependence of R(E) = S(E)
√
E for this reaction is

shown in figure 8. The experimental data were collected
from Refs. [58–62].

Using the chi-square fit with a sum of polynomials and
Breit-Wigners obtained to reproduce the data in figure 8,
we show in figure 9 the reaction rates for 7Be(n,p)7Li as a
function of the temperature T9 for different values of the
non-extensive parameter q. The rates are given in terms
of the natural logarithm ofNA〈σv〉 (in units of cm3 mol−1

s−1). The solid curve corresponds to the usual Boltz-
mann distribution, i.e., q = 1. The dashed and dotted
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Figure 9: Reaction rates for 7Be(n,p)7Li as a function of the
temperature T9 for two different values of the non-extensive
parameter q. The rates are given in terms of the logarithm
of NA〈σv〉 (in units of cm3 mol−1 s−1). Results with the use
of non-extensive distributions for q = 0.5 (dotted line) and
q = 2 (dashed line) are shown.

curves are obtained for q = 2 and q = 0.5, respectively.
In contrast to reactions induced by charged particles, we
now see strong deviations from the Maxwellian rate both
for q > 1 and q < 1. For q < 1 the deviations are
larger at small temperatures and decrease as the energy
increase, tending asymptotically to the Maxwellian rate
at large temperatures. This behavior can be understood
from figure 7 (for 7Be(n,p)7Li the results are nearly the
same as in Fig. 7). At small temperatures, e.g. T9 = 0.1,
the distribution for q = 0.5 is strongly enhanced at large
energies and the tendency is that the reaction rates in-
crease at low temperatures. This enhancement disap-
pears as the temperature increase (lower panel of figure
7). For q = 2 the reaction rate is suppressed, although
not as much as for the charged-induced reactions, the
reason being due a compensation by an increase because
of normalization at low energies.

Having discussed the dependence of the reaction rates
on the non-extensive parameter q for a few standard re-
actions, we now consider the implications of the non-
extensive statistics to the predictions of the BBN. It is
clear from the results presented above that an apprecia-
ble impact on the abundances of light elements will arise.

IV. BBN WITH NON-EXTENSIVE STATISTICS

The BBN is sensitive to certain parameters, including
the baryon-to-photon ratio, number of neutrino families,
and the neutron decay lifetime. We use the values η =
6.19 × 10−10, Nν = 3, and τn = 878.5 s for the baryon-
photon ratio, number of neutrino families, and neutron-
day lifetime, respectively. Our BBN abundances were

Figure 10: Deuterium abundance. The solid curve is the re-
sult obtained with the standard Maxwell distributions for the
reaction rates. Results with the use of non-extensive distri-
butions for q = 0.5 (dotted line) and q = 2 (dashed line) are
shown.

calculated with a modified version of the standard BBN
code derived from Refs. [63–65].

Although BBN nucleosynthesis can involve reac-
tions up to the CNO cycle [66], the most impor-
tant reactions which can significantly affect the pre-
dictions of the abundances of the light elements
[4He, D, 3He, 7Li] are n-decay, p(n,γ)d, d(p,γ)3He,
d(d,n)3He, d(d,p)t, 3He(n,p)t, t(d,n)4He, 3He(d,p)4He,
3He(α, γ)7Be, t(α, γ)7Li, 7Be(n,p)7Li and 7Li(p,α)4He.
Except for these reactions, we have used the reaction
rates needed for the remaining reactions from a compila-
tion by NACRE [67] and that reported in Ref. [68]. For
the 11 reactions mentioned above, we have collected data
from Refs. [67–69], and references mentioned therein
(data for n(p,γ,d) reaction was taken from the on-line
ENDF database [70] - see also [71, 72]), fitted the S-
factors with a sum of polynomials and Breit-Wigner func-
tions and calculated the reaction rates for Maxwellian
and non-Maxwellian distributions.

A. Elemental abundances

In figure 10 we show the calculated deuterium abun-
dance. The solid curve is the result with the stan-
dard Maxwell distributions for the reaction rates. Using
the non-extensive distributions yields the dotted line for
q = 0.5 and the dashed line for q = 2. It is interest-
ing to observe that the deuterium abundances are only
moderately modified due to the use of the non-extensive
statistics for q = 0.5. Up to temperatures of the order
of T9 = 1, the abundance for D/H tends to agree for the
extensive and non-extensive statistics. This is due to the
fact that any deuterium that is formed is immediately
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destroyed (a situation known as the deuterium bottle-
neck). But, as the temperature decreases, the reaction
rates for the p(n,γ)d reaction are considerably enhanced
for q = 2 (see figure 7), and perhaps more importantly,
they are strongly suppressed for all other reactions in-
volving deuterium destruction, as clearly seen in figure 4.
This creates an unexpected over abundance of deuterons
for the non-extensive statistics with q = 2. The deu-
terium, a very fragile isotope, is easily destroyed after
the BBN and astrated. Its primordial abundance is de-
termined from observations of interstellar clouds at high
redshift, on the line of sight of distant quasars. These
observations are scarce but allow to set an average value
of D/H = 2.82+0.20

−0.19 × 10−5 [73]. The predictions for the

D/H ratio with the q = 2 statistics (D/H = 5.70× 10−3)
is about a factor 200 larger than those from the standard
BBN model, clearly in disagreement with the observa-
tion.

Table I: Predictions of the BBN (with ηWMAP = 6.2×10−10)
with Maxwellian and non-Maxwellian distributions compared
with observations. All numbers have the same power of ten
as in the last column.

Maxwell Non-Max. Non-Max. Observation

BBN q = 0.5 q = 2
4He/H 0.249 0.243 0.141 0.2561± 0.0108

D/H 2.62 3.31 570 2.82+0.20
−0.19(×10−5)

3He/H 0.98 0.91 69.1 (1.1± 0.2)(×10−5)
7Li/H 4.39 6.89 356. (1.58± 0.31)(×10−10)

A much more stringent constraint for elemental abun-
dances is given by 4He, which observations set at about
4He/H ≡ Yp = 0.2561 ± 0.0108 [74–76]. The 4He abun-
dance generated from our BBN calculation is plotted in
figure 11. The solid curve is the result obtained with
the standard Maxwell distribution for the reaction rates.
Using the non-extensive distributions yields the dotted
line for q = 0.5 and the dashed line for q = 2. Again,
the predicted abundances for q = 2 deviate substantially
from standard BBN results. This time only about half of
4He is produced with the use of a non-extensive statistics
with q = 2. The reason for this is the suppression of the
reaction rates for formation of 4He with q = 2 through
the charged particle reactions t(d,n)4He, 3He(d,p)4He.

A strong impact of using non-extensive statistics for
both q = 0.5 and q = 2 values of the non-extensive
parameter is seen in figure 12 for the 3He abundance.
While for q = 2 there is an overshooting in the produc-
tion of 3He, for q = 0.5 one finds a smaller value than the
one predicted by the standard BBN. This is due to the
distinct results for the destruction of 3He through the
reaction 3He(n,p)t, which is enhanced for q = 0.5 and
suppressed for q = 2, in the same way as it happens for
the reaction 7Be(n,p)7Li, shown in figure 8. 3He is both
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Figure 11: 4He abundance. The solid curve is the result ob-
tained with the standard Maxwell distributions for the reac-
tion rates. Results with the use of non-extensive distributions
for q = 0.5 (dotted line) and q = 2 (dashed line) are also
shown.

Figure 12: 3He abundance. The solid curve is the result ob-
tained with the standard Maxwell distributions for the reac-
tion rates. Results with the use of non-extensive distributions
for q = 0.5 (dotted line) and q = 2 (dashed line) are also
shown.

produced and destroyed in stars and its abundance is still
subject to large uncertainties, 3He/H = (1.1±0.2)×10−5

[77, 78].

Non-extensive statistics for both q = 0.5 and q = 2 val-
ues also alter substantially the 7Li abundance, as shown
in figure 13. For both values of the non-extensive param-
eter q = 2, and q = 0.5, there is an overshooting in the
production of 7Li. The increase in the 7Li abundance
is more accentuated for q = 2. The lithium problem
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is associated with a smaller value of the observed 7Li
abundance as compared the predictions of BBN. There
has been many attempts to solve this problem by test-
ing all kinds of modifications of the parameters of the
BBN or the physics behind it (a sample of this liter-
ature is found in Refs. [8, 31, 71, 79–84] and refer-
ences therein). In the present case, the use of a non-
Maxwellian velocity distribution seems to worsen this
scenario. A recent analysis yields the observational value
of 7Li/H = (1.58± 0.31)× 10−10 [85].

B. Sensitivity study

We have calculated a window of opportunity for the
non-extensive parameter q with which one can reproduce
the observed abundance of light elements. We chose the
data for the abundances, Yi, of 4He/H, D/H, 3He/H and
7Li as reference. We then applied the ordinary χ2 statis-
tics, defined by the minimization of

χ2 =
∑
i

[Yi(q)− Yi(obs)]2

σi
, (28)

where Yi(q) are the abundances obtained with the non-
extensive statistics with parameter q, Yi(obs) are the ob-
served abundances, and σi the errors for each datum, and
the sum is over all data mentioned in Table I. From this
chi-square fit we conclude that q = 1+0.05

−0.12 is compatible
with observations.

No attempt has been made to determine which ele-
ment dominates the constraint on q. This might be im-
portant for a detailed study of the elemental abundance
influence from nuclear physics inputs, namely, the uncer-
tainty of the reaction cross sections. A study along these
lines might be carried in a similar fashion as described in
Ref. [79]. Weights on the reliability of observational data
should also be considered for a more detailed analysis.
For example, constraints arising from 3He/H abundance
may not be considered trustworthy because of uncertain
galactic chemical evolution. On the other hand, a con-
straint from the observation of 3He/D is more robust, and
so on. Based on our discussion in Section II, it is more im-
portant to determine how the non-extensive statistics can
modify more stringent conditions during the big bang,
such as the modification of weak-decay rates and its in-
fluence on the n/p ratio which strongly affects the 4He
abundance.

V. CONCLUSIONS

In table I we present results for the predictions of the
BBN with Maxwellian and non-Maxwellian distributions.
The predictions are compared with data from observa-
tions reported in the literature. It is evident that the re-
sults obtained with the non-extensive statistics strongly
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Figure 13: 7Li abundance. The solid curve is the result ob-
tained with the standard Maxwell distributions for the reac-
tion rates. Results with the use of non-extensive distributions
for q = 0.5 (dotted line) and q = 2 (dashed line) are also
shown.

disagree with the data. The overabundance of 7Li com-
pared to observation gets worse if q > 1. The three
light elements D, 4He and 7Li constrain the primordial
abundances rather well. For all these abundances, a non-
extensive statistics with q > 1 leads to a greater discrep-
ancy with the experimental data.

Except for the case of 3He the use of non-extensive
statistics with q < 0.5 does not rule out its validity
when the non-Maxwellian BBN results are compared to
observations. 3He is at present only accessible in our
Galaxy’s interstellar medium. This means that it can-
not be measured at low metallicity, a requirement to
make a fair comparison to the primordial generation of
light elements. This also means that the primordial 3He
abundance cannot be determined reliably. The result
presented for the 3He abundance in table I is quoted
from Ref. [77]. Notice that our analysis does not in-
clude the changes that the non-extensive statistics would
bring to the n/p conversion rates. The electron distri-
butions would also be expected to change accordingly.
This would change the freeze out temperature and a cor-
responding influence on the 4He abundance.

We conclude that it does not seem possible to change
the Maxwell-Boltzmann statistics to reproduce the ob-
served abundance of light elements in the universe with-
out destroying many other successful predictions of big
bang nucleosynthesis. A chi-square fit of our calcula-
tions with the observations of elemental abundance con-
cludes that the non-extensive parameter is constrained to
q = 1+0.05

−0.12. This means that, should a non-Maxwellian
distribution due to the use of the Tsallis non-extensive
statistics be confirmed (with a sizable deviation from
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q = 1), our understanding of the cosmic evolution of the
universe would have to be significantly changed.
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