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Abstract

In the last decades the Moore-Penrose pseudoinverse has found a wide range of applications in many areas of Science
and became a useful tool for physicists dealing, for instance, with optimization problems, with data analysis, with the
solution of linear integral equations, etc. The existence of such applications alone should attract the interest of students
and researchers in the Moore-Penrose pseudoinverse and in related subjects, like the singular values decomposition
theorem for matrices. In this note we present a tutorial review of the theory of the Moore-Penrose pseudoinverse. We
present the first definitions and some motivations and, after obtaining some basic results, we center our discussion
on the Spectral Theorem and present an algorithmically simple expression for the computation of the Moore-Penrose
pseudoinverse of a given matrix. We do not claim originality of the results. We rather intend to present a complete
and self-contained tutorial review, useful for those more devoted to applications, for those more theoretically oriented
and for those who already have some working knowledge of the subject.

1 Introduction, Motivation and Notation

In this paper we present a self-contained review of some of the basic results on the so-called Moore-Penrose pseudoin-
verse of matrices, a concept that generalizes the usual notion of inverse of a square matrix, but that is also applicable
to singular square matrices or even to non-square matrices. This notion is particularly useful in dealing with certain
linear least squares problems, as we shall discuss in Section 6, i.e., problems where one searches for an optimal approx-
imation for solutions of linear equations like Ax = y, where A is a given m×n matrix, y is a given column vector with
m components and the unknown x, a column vector with n components, is the searched solution. In many situations,
a solution is non-existing or non-unique, but one asks for a vector x such that the norm of the difference Ax− y is the
smallest possible (in terms of least squares).

Let us be a little more specific. Let A ∈ Mat (C, m, n) (the set of all complex m × n matrices) and y ∈ C

m be
given and consider the problem of finding x ∈ C

n satisfying the linear equation

Ax = y . (1)

If m = n and A has an inverse, the (unique) solution is, evidently, x = A−1y. In other cases the solution may not exist
or may not be unique. We can, however, consider the alternative problem of finding the set of all vectors x′ ∈ C

n such
that the Euclidean norm ‖Ax′ − y‖ reaches its least possible value. This set is called the minimizing set of the linear
problem (1). Such vectors x′ ∈ C

n would be the best approximants for the solution of (1) in terms of the Euclidean
norm, i.e., in terms of “least squares”. As we will show in Theorem 6.1, the Moore-Penrose pseudoinverse provides
this set of vectors x′ that minimize ‖Ax′ − y‖: it is the set

{

A+y +
(
1n − A+A

)
z, z ∈ C

n
}

, (2)

where A+ ∈ Mat (C, n, m) denotes the Moore-Penrose pseudoinverse of A. An important question for applications is
to find a general and algorithmically simple way to compute A+. The most common approach uses the singular values
decomposition and is described in Appendix B. Using the Spectral Theorem and Tikhonov’s regularization method
we show that A+ can be computed by the algorithmically simpler formula

A+ =

s∑

b=1

βb 6=0

1

βb






s∏

l=1

l 6=b

(
βb − βl

)−1











s∏

l=1

l 6=b

(

A∗A− βl1n

)




A∗ , (3)

where A∗ denotes the adjoint matrix of A and βk, k = 1, . . . , s, are the distinct eigenvalues of A∗A (the so-called
singular values of A). See Theorem 5.1 for a more detailed statement. One of the aims of this paper is to present a
proof of (3) by combining the spectral theorem with the a regularization procedure due to Tikhonov [4, 5].
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Some applications of the Moore-Penrose pseudoinverse

Problems involving the determination of the minimizing set of (1) are always present when the number of unknowns
exceeds the number of values provided by measurements. Such situations occur in many areas of Applied Mathematics,
Physics and Engineering, ranging from imaging methods, like MRI (magnetic resonance imaging) [8, 9, 10], fMRI
(functional MRI) [12, 11], PET (positron emission tomography) [16, 17] and MSI (magnetic source imaging) [13, 14, 15],
to seismic inversion problems [18, 19].

The Moore-Penrose pseudoinverse and/or the singular values decomposition (SVD) of matrices (discussed in Ap-
pendix B) are also employed in data analysis, as in the treatment of electroencephalographic source localization [24]
and in the so-called Principal Component Analysis (PCA). Applications of this last method to astronomical data
analysis can be found in [21, 20, 22, 23] and applications to gene expression analysis can be found in [25, 26]. Image
compression algorithms using SVD are known at least since [27] and digital image restoration using the Moore-Penrose
pseudoinverse have been studied in [28, 29].

Problems involving the determination of the minimizing set of (1) also occur, for instance, in certain numerical
algorithms for finding solutions of linear Fredholm integral equations of the first kind:

∫ b

a

k(x, y)u(y) dy = f(x) ,

where −∞ < a < b < ∞ and where k and f are given functions. See Section 4 for a further discussion of this issue.
For an introductory account on integral equations, rich in examples and historical remarks, see [30].

Even this short list of applications should convince a student of Physics or Applied Mathematics of the relevance of
the Moore-Penrose pseudoinverse and related subjects and our main objective is to provide a self-contained introduction
to the required theory.

Organization

In Section 2 we present the definition of the Moore-Penrose pseudoinverse and obtain its basic properties. In Section 3
we further develop the theory of the Moore-Penrose pseudoinverses. In Section 4 we describe Tikhonov’s regularization
method for the computation of Moore-Penrose pseudoinverses and present a first proof of existence. Section 5 collects
the previous results and derives expression (3), based on the Spectral Theorem, for the computation of Moore-
Penrose pseudoinverses. This expression is algorithmically simpler than the usual method based on the singular values
decomposition (described in Appendix B). In Section 6 we show the relevance of the Moore-Penrose pseudoinverse for
the solution of linear least squares problems, its main motivation. In Appendix A we present a self-contained review
of the results on Linear Algebra and Hilbert space theory, not all of them elementary, that we need in the main part
of this paper. In Appendix B we approach the existence problem of the Moore-Penrose pseudoinverse by using the
usual singular values decomposition method.

Notation and preliminary definitions

In the following we fix the notation utilized throughout the paper. We denote Cn the vector space of all n-tuples of

complex numbers: Cn :=

{( z1

...
zn

)

, with zk ∈ C for all k = 1, . . . , n

}

. We denote the usual scalar product in Cn by

〈·, ·〉
C

or simply by 〈·, ·〉, where for z =

( z1

...
zn

)

∈ C

n and w =

( w1

...
wn

)

∈ C

n, we have

〈z, w〉
C

≡ 〈z, w〉 :=
n∑

k=1

zkwk .

Note that this scalar product is linear in the second argument and anti-linear in the first, in accordance with the
convention adopted in Physics. Two vectors u and v ∈ C

n are said to be orthogonal according to the scalar product
〈·, ·〉 if 〈u, v〉 = 0. If W ⊂ C

n is a subspace of Cn we denote by W⊥ the subspace of Cn composed by all vectors
orthogonal to all vectors of W . The usual norm of a vector z ∈ C

n will be denoted by ‖z‖
C

or simply by ‖z‖ and is
defined by ‖z‖

C

≡ ‖z‖ =
√

〈z, x〉. It is well known that Cn is a Hilbert space with respect to the usual scalar product.
The set of all complex m× n matrices (m rows and n columns) will be denoted by Mat (C, m, n). The set of all

square n× n matrices with complex entries will be denoted by Mat (C, n).
The identity matrix will be denoted by 1. Given A ∈ Mat (C, m, n) we denote by AT element of Mat (C, n, m)

whose matrix elements are (AT )ij = Aji for all i ∈ {1, . . . , n}, j ∈ {1, . . . , m}. The matrix AT is said to
be the transpose of A. It is evident that (AT )T = A and that (AB)T = BTAT for all A ∈ Mat (C, m, n) and
B ∈ Mat (C, n, p).
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If A ∈ Mat (C, m, n), then its adjoint A∗ ∈ Mat (C, n, m) is defined as the matrix whose matrix elements (A∗)ij
are given by Aji for all 0 ≤ i ≤ n and 0 ≤ j ≤ m.

Given a set α1, . . . , αn of complex numbers we denote by diag (α1, . . . , αn) ∈ Mat (C, n) the diagonal matrix
whose k-th diagonal entry is αk:

(
diag (α1, . . . , αn)

)

ij
=

{
αi, for i = j ,
0, for i 6= j .

The spectrum of a square matrix A ∈ Mat (C, n) coincides with the set of its eigenvalues (see the definitions in
Appendix A) and will be denoted by σ(A).

We denote by 0a, b ∈ Mat (C, a, b) the a× b whose matrix elements are all zero. We denote by 1l ∈ Mat (C, l) the
l×l identity matrix. If no danger of confusion is present, we will simplify the notation and write 0 and 1 instead of 0a, b
and 1l, respectively. We will also employ the following definitions: for m, n ∈ N, let Im, m+n ∈ Mat (C, m, m + n)
and Jm+n, n ∈ Mat (C, m+ n, n) be given by

Im, m+n :=
(
1m 0m, n

)
and Jm+n, n :=

(
1n

0m, n

)

. (4)

The corresponding transpose matrices are

(
Im, m+n

)T
:=

(
1m

0n, m

)

= Jm+n, m and
(
Jm+n, n

)T
:=

(
1n 0n, m

)
= In, m+n . (5)

The following useful identities will be used bellow:

Im, m+n

(
Im, m+n

)T
= Im, m+nJm+n, m = 1m , (6)

(
Jm+n, n

)T
Jm+n, n = In, m+nJm+n, n = 1n , (7)

For each A ∈ Mat (C, m, n) we can associate a square matrix A′ ∈ Mat (C, m+ n) given by

A′ :=
(
Im, m+n

)T
A
(
Jm+n, n

)T
= Jm+n, mAIn, m+n =

(
A 0m, m

0n, n 0n, m

)

. (8)

As one easily checks, we get from (6)–(7) the useful relation

A = Im, m+nA
′Jm+n, n . (9)

The canonical basis of vectors in Cn is

e1 =










1
0
0
...
0










, e2 =










0
1
0
...
0










, . . . , en =










0
0
...
0
1










, (10)

Let x1, . . . , xn be vectors, represented in the canonical basis as

xa =






xa
1

...
xa
n




 .

We will denote by
[[

x1, . . . , xn
]]

the n × n constructed in such a way that its a-th column is the vector xa, that
means,

[[

x1, . . . , xn
]]

=






x1
1 · · · xn

1

...
. . .

...
x1
n · · · xn

n




 . (11)

It is obvious that 1 =
[[

e1, . . . , en

]]

. With this notation we write

B
[[

x1, . . . , xn
]]

=
[[

Bx1, . . . , Bxn
]]

, (12)
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for any B ∈ Mat (C, m, n), as one easily checks. Moreover, if D is a diagonal matrix D = diag (d1, . . . , dn), then

[[

x1, . . . , xn
]]

D =
[[

d1x
1, . . . , dnx

n
]]

. (13)

If v1, . . . , vk are elements of a complex vector space V , we denote by [v1, . . . , vk] the subspace generated

v1, . . . , vk, i.e., the collection of all linear combinations of the v1, . . . , vk: [v1, . . . , vk] :=
{

α1v1 + · · · +

αkvk, α1, . . . , αk ∈ C

}

.

More definitions and general results can be found in Appendix A.

2 The Moore-Penrose Pseudoinverse. Definition and First Prop-

erties

In this section we define the notion of a Moore-Penrose pseudoinverse and study its uniqueness. The question of the
existence of the Moore-Penrose pseudoinverse of a given matrix is analyzed in other sections.

Generalized inverses, or pseudoinverses

Let m, n ∈ N and let A ∈ Mat (C, m , n) be a m × n matrix (not necessarily a square matrix). A matrix B ∈
Mat (C, n, m) is said to be a generalized inverse, or a pseudoinverse, of A if it satisfies the following conditions:

1. ABA = A,

2. BAB = B.

If A ∈ Mat (C, n) is a non-singular square matrix, its inverse A−1 satisfies trivially the defining properties of the
generalized inverse above. We will prove later that every matrix A ∈ Mat (C, m , n) has at least one generalized
inverse, namely, the Moore-Penrose pseudoinverse. The general definition above is not enough to guarantee uniqueness
of the generalized inverse of any matrix A ∈ Mat (C, m , n).

The definition above is too wide to be useful and it is convenient to narrow it in order to deal with certain specific
problems. In what follows we will discuss the specific case of the Moore-Penrose pseudoinverse and its application to
optimization of linear least squares problems.

Defining the Moore-Penrose pseudoinverse

Let m, n ∈ N and let A ∈ Mat (C, m , n). A matrix A+ ∈ Mat (C, n, m) is said to be a Moore-Penrose pseudoinverse
of A if it satisfies the following conditions:

1. AA+A = A,

2. A+AA+ = A+,

3. AA+ ∈ Mat (C, m) and A+A ∈ Mat (C, n) are self-adjoint.

It is easy to see again that if A ∈ Mat (C, n) is non-singular, then its inverse satisfies all defining properties of a
Moore-Penrose pseudoinverse.

The notion of Moore-Penrose pseudoinverse was introduced by E. H. Moore [1] in 1920 and rediscovered by R.
Penrose [2, 3] in 1955. The Moore-Penrose pseudoinverse is a useful concept in dealing with optimization problems,
as the determination of a “least squares” solution of linear systems. We will treat such problems later (see Theorem
6.1), after dealing with the question of uniqueness and existence of the Moore-Penrose pseudoinverse.

The uniqueness of the Moore-Penrose pseudoinverse

We will first show the uniqueness of the Moore-Penrose pseudoinverse of a given matrix A ∈ Mat (C, m, n), assuming
its existence.

Let A+ ∈ Mat (C, n, m) be a Moore-Penrose pseudoinverse A ∈ Mat (C, m, n) and let B ∈ Mat (C, n, m) be
another Moore-Penrose pseudoinverse of A, i.e., such that ABA = A, BAB = B with AB and BA self-adjoint. Let
M1 := AB −AA+ = A

(
B −A+

)
∈ Mat (C, m). By the hypothesis, M1 is self-adjoint (since it is the difference of two

self-adjoint matrices) and (M1)
2 =

(
AB − AA+

)
A
(
B − A+

)
=
(
ABA− AA+A

)(
B − A+

)
= (A− A)

(
B − A+

)
= 0.

Since M1 is self-adjoint, the fact that (M1)
2 = 0 implies that M1 = 0, since for all x ∈ C

m one has ‖M1x‖2 =
〈M1x, M1x〉 =

〈
x, (M1)

2x
〉
= 0, implying M1 = 0. This showed that AB = AA+. Following the same steps we can

prove that BA = A+A (consider the self-adjoint matrix M2 := BA−A+A ∈ Mat (C, n) and proceed as above). Now,
all this implies that A+ = A+AA+ = A+

(
AA+

)
= A+AB =

(
A+A

)
B = BAB = B, thus establishing uniqueness.
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As we already commented, if A ∈ Mat (C, n) is a non-singular square matrix, its inverse A−1 trivially satisfies the
defining conditions of the Moore-Penrose pseudoinverse and, therefore, we have in this case A+ = A−1 as the unique
Moore-Penrose pseudoinverse of A. It is also evident from the definition that for 0mn, the m × n identically zero
matrix, one has (0mn)

+ = 0nm.

Existence of the Moore-Penrose pseudoinverse

We will present two proofs of the existence of the Moore-Penrose pseudoinverse A+ for an arbitrary matrix A ∈
Mat (C, m, n). Both proofs produce algorithms for the explicit computation of A+. The first one will be presented
in Section 4 (Theorems 4.3 and 5.1) and will follow from results presented below. Expressions (39) and (40) furnish
explicit expressions for the computation of A+ in terms of A, A∗ and the eigenvalues of AA∗ or A∗A (i.e., the singular
values of A).

The second existence proof will be presented in Appendix B and relies on the singular values decomposition
presented in Theorem A.16. For this proof, the preliminary results presented below are not required. This second
proof is the one more frequently found in the literature, but we believe that expressions (39) and (40) provide an
algorithmically simpler way for the determination of the Moore-Penrose pseudoinverse of a given matrix.

Computing the Moore-Penrose pseudoinverse in some special cases

If A ∈ Mat (C, m, 1), A =

( a1

...
am

)

, a non-zero column vector, then one can easily verify that A+ = 1
‖A‖2

A∗ =

1
‖A‖2

( a1 , ..., am ), where ‖A‖ =
√

|a1|2 + · · ·+ |am|2. In particular, if z ∈ C, then (z)+ =

{
0, z = 0
1
z
, z 6= 0

, by taking z

as an element of Mat (C, 1, 1).
This can be further generalized. If A ∈ Mat (C, m, n) and (AA∗)−1 exists, then

A+ = A∗
(
AA∗

)−1
, (14)

because we can readly verify that the r.h.s. satisfies the defining conditions of A+. Analogously, if (A∗A)−1 exists,
one has

A+ =
(
A∗A

)−1
A∗ . (15)

For instance, for A = ( 2 0 i
0 i 1 ) one can check that AA∗ is invertible, but A∗A is not, and we have A+ = A∗

(
AA∗

)−1
=

1
9

(
4 −2i
1 −5i
−i 4

)

. Similarly, for A =
(

1 2
0 i
0 3

)

, AA∗ is singular, but A∗A is invertible and we have A+ =
(
A∗A

)−1
A∗ =

1
10

(
10 2i −6
0 −i 3

)
.

The relations (14)–(15) are significant because they will provide an important hint to find the Moore-Penrose
pseudoinverse of a general matrix, as we will discuss later. In Proposition 3.2 we will show that one has in general
A+ = A∗

(
AA∗

)+
=
(
A∗A

)+
A∗ and in Theorem 4.3 we will discuss what can be done in the cases when A∗A or A∗A

are not invertible.

3 Further Properties of the Moore-Penrose Pseudoinverse

The following properties of the Moore-Penrose pseudoinverse follow immediately from its definition and from unique-
ness. The proofs are elementary and left to the reader: for any A ∈ Mat (C, m, n) one has

1.
(
A+
)+

= A,

2.
(
A+
)T

=
(
AT
)+

, A+ =
(
A
)+

and, consequently
(
A+
)∗

=
(
A∗
)+

,

3. (zA)+ = z−1A+ for all z ∈ C, z 6= 0.

It is however important to remark that for A ∈ Mat (C, m, n) and B ∈ Mat (C, n, p), the Moore-Penrose pseudoin-
verse (AB)+ is not always equals to B+A+, in contrast to what happens with the usual inverse in the case m = n = p.
A relevant exception will be found in Proposition 3.2.

The next proposition lists some important properties that will be used below.
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Proposition 3.1 The Moore–Penrose pseudoinverse satisfies the following relations:

A+ = A+
(
A+
)∗

A∗ , (16)

A = AA∗
(
A+
)∗

, (17)

A∗ = A∗ AA+ , (18)

A+ = A∗ (A+)∗ A+ , (19)

A =
(
A+)∗ A∗ A , (20)

A∗ = A+ AA∗ , (21)

valid for all A ∈ Mat (C, m, n). �

For us, the most relevant of the relations above is relation (18), since we will make use of it in the proof of
Proposition 6.1 we when deal with optimization of least squares problems.

Proof of Proposition 3.1. Since AA+ is self-adjoint, one has AA+ =
(
AA+

)∗
=
(
A+
)∗
A∗. Multiplying to the left by

A+, we get A+ = A+
(
A+
)∗
A∗, proving (16). Replacing A → A+ and using the fact that A =

(
A+
)+

, one gets from

(16) A = AA∗
(
A+
)∗
, which is relation (17). Replacing A → A∗ and using the fact that

(
A∗
)+

=
(
A+
)∗
, we get from

(17) that A∗ = A∗AA+, which is relation (18).
Relations (19)–(21) can be obtained analogously from the fact that A+A is also self-adjoint, but they follow more

easily by replacing A → A∗ in (16)–(18) and by taking the adjoint of the resulting expressions.

From Proposition 3.1 other interesting results can be obtained, some of which are listed in the following proposition:

Proposition 3.2 For all A ∈ Mat (C, m, n) one has
(
AA∗)+ =

(
A∗)+A+ . (22)

From this we get
A+ = A∗(AA∗)+ =

(
A∗A

)+
A∗ , (23)

also valid for all A ∈ Mat (C, m, n). �

Expression (23) generalizes (14)–(15) and can be employed to compute A+ provided
(
AA∗

)+
or
(
A∗A

)+
were

previously known.

Proof of Proposition 3.2. Let B =
(
A∗
)+

A+. One has

AA∗ (17)
= AA∗ (A+)∗ A∗ (21)

= AA∗ (A+)∗ A+ AA∗ = (AA∗)B(AA∗) ,

where we use that
(
A∗
)+

=
(
A+
)∗
. One also has

B =
(
A∗
)+

A+ (16)
= (A+)∗ A+ AA+ (19)

= (A+)∗ A+ AA∗ (A+)∗ A+ = B
(
AA∗

)
B .

Notice that
(
AA∗)B =

(

AA∗(A+)∗
)

A+ (18)
= AA+

which is self-adjoint, by definition. Analogously,

B
(
AA∗

)
= (A+)∗

(

A+AA∗
)

(20)
= (A∗)+A∗ ,

which is also self-adjoint. The facts exposed in the lines above prove that B is the Moore-Penrose pseudoinverse of
AA∗, establishing (22). Replacing A → A∗ in (22), one also gets

(
A∗A

)+
= A+

(
A∗
)+

. (24)

Notice now that

A∗
(
AA∗

)+ (22)
= A∗

(
A∗
)+

A+ (19)
= A+

and that
(
A∗A

)+
A∗ (24)

= A+(A∗)+A∗ (16)
= A+ ,

establishing (23).
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The kernel and the range of a matrix and the Moore-Penrose pseudoinverse

The kernel and the range (or image) of a matrix A ∈ Mat (C, m, n) are defined by Ker (A) := {u ∈ C

n| Au = 0} and
Ran (A) := {Au, u ∈ C

n}, respectively. It is evident that Ker (A) is a linear subspace of Cn and that Ran (A) is a
linear subspace of Cm.

The following proposition will be used below, but is interesting by itself.

Proposition 3.3 Let A ∈ Mat (C, m, n) and let us define P1 := 1n − A+A ∈ Mat (C, n) and P2 := 1m − AA+ ∈
Mat (C, n). Then, the following claims are valid:

1. P1 and P2 are orthogonal projectors, that means, they satisfy (Pk)
2 = Pk and P ∗

k = Pk, k = 1, 2.

2. Ker (A) = Ran (P1), Ran (A) = Ker (P2), Ker (A+) = Ran (P2) and Ran
(
A+
)
= Ker (P1).

3. Ran (A) = Ker
(
A+
)⊥

and Ran
(
A+
)
= Ker (A)⊥.

4. Ker (A)⊕ Ran
(
A+
)
= C

n and Ker
(
A+
)
⊕ Ran (A) = C

m, both being direct sums of orthogonal subspaces. �

Proof. Since AA+ and A+A are self-adjoint, so are P1 and P2. One also has (P1)
2 = 1 − 2A+A + A+AA+A =

1− 2A+A+ A+A = 1− A+A = P1 and analogously for P2. This proved item 1.
Let x ∈ Ker (A). Since Ran (P1) is a closed linear subspace of of Cn, the “Best Approximant Theorem”, Theorem

A.1, and the Orthogonal Decomposition Theorem, Theorem A.3, guarantee the existence of a unique z0 ∈ Ran (P1)
such that ‖x − z0‖ = min

{
‖x − z‖, z ∈ Ran (P1)

}
. Moreover, x − z0 is orthogonal to Ran (P1). Hence, there exists

at least one y0 ∈ C

m such that x − P1y0 is orthogonal to every element of the form P1y, i.e., 〈x − P1y0, P1y〉 = 0
for all y ∈ C

m, what implies 〈P1(x − P1y0), y〉 = 0 for all y ∈ C

m what, in turn, implies P1(x − P1y0) = 0. This,
however, says that P1x = P1y0. Since x ∈ Ker (A), one has P1x = x (by the definition of P1). We therefore proved
that if x ∈ Ker (A) then x ∈ Ran (P1), establishing that Ker (A) ⊂ Ran (P1). On the other hand, the fact that
AP1 = A

(
1− A+A

)
= A− A = 0 implies Ran (P1) ⊂ Ker (A), establishing that Ran (P1) = Ker (A).

If z ∈ Ker (P1), then z = A+Az, proving that z ∈ Ran
(
A+
)
. This established that Ker (P1) ⊂ Ran

(
A+
)
. On the

other hand, if u ∈ Ran
(
A+
)
then there exists v ∈ C

m such that u = A+v. Therefore, P1u =
(
1n−A+A

)
A+v =

(
A+−

A+AA+
)
v = 0, proving that u ∈ Ker (P1) and that Ran

(
A+
)
⊂ Ker (P1). This established that Ker (P1) = Ran

(
A+
)
.

P2 is obtained from P1 by the substitution A → A+ (recalling that
(
A+
)+

= A). Hence, the results above imply
that Ran (P2) = Ker

(
A+
)
and that Ker (P2) = Ran (A). This proves item 2.

If M ∈ Mat (C, p) (with p ∈ N, arbitrary) is self-adjoint, that 〈y, Mx〉 = 〈My, x〉 for all x, y ∈ C

p. This relation
makes evident that Ker (M) = Ran (M)⊥. Therefore, item 3 follows from item 2 by taking M = P1 and M = P2.
Item 4 is evident from item 3.

4 Tikhonov’s Regularization and Existence Theorem for the Moore-

Penrose Pseudoinverse

In (14) and (15) we saw that if
(
AA∗

)−1
exists, then A+ = A∗

(
AA∗

)−1
an that if

(
A∗A

)−1
exists, then A+ =

(
A∗A

)−1
A∗. If those inverses do not exist, there is an alternative procedure to obtain A+. We know from Proposition

A.4 that even if
(
AA∗

)−1
does not exist, the matrix AA∗ + µ1 will be invertible for all non-vanishing µ ∈ C with |µ|

small enough. Hence, we could conjecture that the expressions A∗
(
AA∗+µ1

)−1
and

(
A∗A+µ1

)−1
A∗ are well-defined

for µ 6= 0 and |µ| small enough and converge to A+ when the limit µ → 0 is taken. As will now show, this conjecture
is correct.

The provisional replacement of the singular matrices AA∗ or A∗A by the non-singular ones AA∗+µ1 or A∗A+µ1
(with µ 6= 0 and |µ| “small”) is a regularization procedure known as Tikhonov’s regularization. This procedure was
introduced by Tikhonov in [4] (see also [5] and, for historical remarks, [30]) in his search for uniform approximations
for the solutions of Fredholm’s equation of the first kind

∫ b

a

k(x, y)u(y) dy = f(x) , (25)

where −∞ < a < b < ∞ and where k and f are given functions satisfying adequate smoothness conditions. In
operator form, (25) becomes Ku = f and K is well known to be a compact operator (see, e.g., [6]) if k is a continuous
function. By using the method of finite differences or by using expansions in terms of orthogonal functions, the inverse
problem (25) can be replaced by an approximating inverse matrix problem Ax = y, like (1). By applying A∗ to the
left, one gets A∗Ax = A∗y. Since the inverse of A∗A may not exist, one first considers a solution xµ of the regularized

equation
(
A∗A + µ1

)
xµ = A∗y, with some adequate µ ∈ C, and asks whether the limit lim|µ|→0

(
A∗A + µ1

)−1
A∗y

7



can be taken. As we will see, the limit exists and is given precisely by A+y. In Tikhonov’s case, the regularized
equation

(
A∗A + µ1

)
xµ = A∗y can be obtained from a related Fredholm’s equation of the second kind, namely

K∗Kuµ +µuµ = K∗f , for which the existence of solutions, i.e., the existence of the inverse (K∗K +µ1)−1, is granted
by Fredholm’s Alternative Theorem (see, e.g., [6]) for all µ in the resolvent set of K∗K and, therefore, for all µ > 0
(since K∗K is a positive compact operator)3. It is then a technical matter to show that the limit lim

µ→0

µ>0

uµ exists and

provides a uniform approximation to a solution of (25).
Tikhonov, however, does not point to the relation of his ideas to the theory of the Moore-Penrose inverse. This

will be described in what follows. Our first result, presented in the next two lemmas, establishes that the limits
lim
µ→0

A∗
(
AA∗ + µ1m

)−1
and lim

µ→0

(
A∗A+ µ1n

)−1
A∗, described above, indeed exist and are equal.

Lemma 4.1 Let A ∈ Mat (C, m, n) and let µ ∈ C be such that AA∗ + µ1m and A∗A + µ1n are non-singular (that

means µ 6∈ σ
(
AA∗

)
∪ σ
(
A∗A

)
, a finite set). Then, A∗

(
AA∗ + µ1m

)−1
=
(
A∗A+ µ1n

)−1
A∗. �

Recall that, by Proposition A.7, σ
(
AA∗

)
and σ

(
A∗A

)
differ at most by the element 0.

Proof of Lemma 4.1. Let Bµ := A∗
(
AA∗ + µ1m

)−1
and Cµ :=

(
A∗A+ µ1n

)−1
A∗. We have

A∗ABµ = A∗
[
AA∗

](
AA∗ + µ1m

)−1
= A∗

[
AA∗ + µ1m − µ1m

](
AA∗ + µ1m

)−1

= A∗
(

1m − µ
(
AA∗ + µ1m

)−1
)

= A∗ − µBµ .

Therefore,
(
A∗A+ µ1n

)
Bµ = A∗, what implies Bµ =

(
A∗A+ µ1n

)−1
A∗ = Cµ.

Lemma 4.2 For all A ∈ Mat (C, m, n) the limits lim
µ→0

A∗
(
AA∗ + µ1m

)−1
and lim

µ→0

(
A∗A + µ1n

)−1
A∗ exist and are

equal (by Lemma 4.1), defining an element of Mat (C, n, m). �

Proof. Notice first that A is an identically zero matrix iff AA∗ or A∗A are zero matrices. In fact, if, for instance,
A∗A = 0, then for any vector x one has 0 = 〈x, A∗Ax〉 = 〈Ax, Ax〉 = ‖Ax‖2, proving that A = 0. Hence we will
assume that AA∗ and A∗A are non-zero matrices.

The matrix AA∗ ∈ Mat (C, m) is evidently self-adjoint. Let α1, . . . , αr be its distinct eigenvalues. By the Spectral
Theorem for self-adjoint matrices, (see Theorems A.9 and A.13) we may write

AA∗ =

r∑

a=1

αaEa , (26)

where Ea are the spectral projectors of AA∗ and satisfy EaEb = δabEa, E
∗
a = Ea and

∑r
a=1 Ea = 1m. Therefore,

AA∗ + µ1m =

r∑

a=1

(αa + µ)Ea

and, hence, for µ 6∈ {α1, . . . , αr}, one has, by (50),

(
AA∗ + µ1m

)−1
=

r∑

a=1

1

αa + µ
Ea and A∗(AA∗ + µ1m

)−1
=

r∑

a=1

1

αa + µ
A∗Ea . (27)

There are now two cases to be considered: 1. zero is not an eigenvalue of AA∗ and 2. zero is eigenvalue of AA∗.
In case 1, it is clear from (27) that the limit lim

µ→0
A∗
(
AA∗ + µ1m

)−1
exists and

lim
µ→0

A∗
(
AA∗ + µ1m

)−1
=

r∑

a=1

1

αa
A∗Ea . (28)

In case 2, let us have, say, α1 = 0. The corresponding spectral projector E1 projects on the kernel of AA∗:
Ker

(
AA∗

)
:= {u ∈ C

n| AA∗u = 0}. If x ∈ Ker
(
AA∗

)
, then A∗x = 0, because 0 =

〈
x, AA∗x

〉
= 〈A∗x, A∗x〉 =

∥
∥A∗x

∥
∥2. Therefore,

A∗E1 = 0 (29)

3Tikhonov’s argument in [4] is actually more complicated, since he does not consider the regularized equation
(

K∗K + µ1
)

uµ = K∗f , but
a more general version where the identity operator 1 is replaced by a Sturm-Liouville operator.
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and, hence, we may write,

A∗(AA∗ + µ1m
)−1

=
r∑

a=2

1

αa + µ
A∗Ea ,

from which we get

lim
µ→0

A∗(AA∗ + µ1m
)−1

=
r∑

a=2

1

αa
A∗Ea . (30)

This proves that lim
µ→0

A∗(AA∗ + µ1m
)−1

always exists. By Lemma 4.1, the limit lim
µ→0

(
A∗A + µ1n

)−1
A∗ also exists

and coincides with lim
µ→0

A∗
(
AA∗ + µ1m

)−1
.

The main consequence is the following theorem, which contains a general proof for the existence of the Moore-
Penrose pseudoinverse:

Theorem 4.3 (Tikhonov’s Regularization) For all A ∈ Mat (C, m, n) one has

A+ = lim
µ→0

A∗(AA∗ + µ1m
)−1

(31)

and
A+ = lim

µ→0

(
A∗A+ µ1n

)−1
A∗ . (32)

�

Proof. The statements to be proven are evident if A = 0mn because, as we already saw, (0mn)
+ = 0nm. Hence, we

will assume that A is a non-zero matrix. This is equivalent (by the comments found in the proof o Lemma 4.2) to
assume, that AA∗ and A∗A are non-zero matrices.

By Lemmas 4.1 and 4.2 it is enough to prove (31). There are two cases to be considered: 1. zero is not an
eigenvalue of AA∗ and 2. zero is an eigenvalue of AA∗. In case 1., we saw in (28), that

lim
µ→0

A∗(AA∗ + µ1m
)−1

=
r∑

a=1

1

αa
A∗Ea =: B .

Notice now that

AB =
r∑

a=1

1

αa
AA∗Ea =

r∑

a=1

1

αa

(
r∑

b=1

αbEb

)

Ea =
r∑

a=1

r∑

b=1

1

αa
αb δabEa =

r∑

a=1

Ea = 1m , (33)

which is self-adjoint and that

BA =
r∑

a=1

1

αa
A∗EaA , (34)

which is also self-adjoint, because αa ∈ R for all a and because (A∗EaA)∗ = A∗EaA for all a, since E∗
a = Ea.

From (33) it follows that ABA = A. From (34) it follows that

BAB =

(
r∑

a=1

1

αa
A∗EaA

)(
r∑

b=1

1

αb
A∗Eb

)

=
r∑

a=1

r∑

b=1

1

αaαb
A∗Ea(AA∗)Eb .

Now, by the spectral decomposition (26) for AA∗, it follows that (AA∗)Eb = αbEb. Therefore,

BAB =

r∑

a=1

r∑

b=1

1

αa
A∗EaEb =

(
r∑

a=1

1

αa
A∗Ea

)( r∑

b=1

Eb

︸ ︷︷ ︸

1m

)

= B .

This proves that A = A+ when 0 is not an eigenvalue of AA∗.
Let is now consider the case when AA∗ has a zero eigenvalue, say, α1. As we saw in (30),

lim
µ→0

A∗
(
AA∗ + µ1m

)−1
=

r∑

a=2

1

αa
A∗Ea =: B .
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Using the fact that (AA∗)Ea = αaEa (what follows from the spectral decomposition (26) for AA∗), we get

AB =

r∑

a=2

1

αa
AA∗Ea =

r∑

a=2

1

αa
αaEa =

r∑

a=2

Ea = 1m −E1 , (35)

which is self-adjoint, since E1 is self-adjoint. We also have

BA =

r∑

a=2

1

αa
A∗EaA , (36)

which is also self-adjoint.
From (35), it follows that ABA = A − E1A. Notice now that (E1A)∗ = A∗E1 = 0, by (29). This establishes that

E1A = 0 and that ABA = A. From (36), it follows that

BAB =

(
r∑

a=2

1

αa
A∗EaA

)(
r∑

b=2

1

αb
A∗Eb

)

=
r∑

a=2

r∑

b=2

1

αaαb
A∗Ea(AA∗)Eb .

Using again (AA∗)Eb = αbEb, we get

BAB =

r∑

a=2

r∑

b=2

1

αa
A∗EaEb =

(
r∑

a=2

1

αa
A∗Ea

)(
r∑

b=2

Eb

)

︸ ︷︷ ︸

1m−E1

= B −
r∑

a=2

1

αa
A∗EaE1 = B ,

since EaE1 = 0 for a 6= 1. This shows that BAB = B. Hence, we established that A = A+ also in the case when AA∗

has a zero eigenvalue, completing the proof of (31).

5 The Moore-Penrose Pseudoinverse and the Spectral Theorem

The proof of Theorem 4.3 also establishes the following facts:

Theorem 5.1 Let A ∈ Mat (C, m, n) be a non-zero matrix and let AA∗ =
∑r

a=1 αaEa be the spectral representation
of AA∗, where {α1, . . . , αr} ⊂ R is the set of distinct eigenvalues of AA∗ and Ea are the corresponding self-adjoint
spectral projections. Then, we have

A+ =
r∑

a=1

αa 6=0

1

αa
A∗Ea . (37)

Analogously, let A∗A =
∑s

b=1 βbFb be the spectral representation of A∗A, where {β1, . . . , βs} ⊂ R is the set of distinct
eigenvalues of A∗A and Fb the corresponding self-adjoint spectral projections. Then, we also have

A+ =
s∑

b=1

βb 6=0

1

βb
FbA

∗ . (38)

Is it worth mentioning that, by Proposition A.7, the sets of non-zero eigenvalues of AA∗ and of A∗A coincide:
{α1, . . . , αr} \ {0} = {β1, . . . , βs} \ {0}).

From (37) and (38) it follows that for a non-zero matrix A we have

A+ =
r∑

a=1

αa 6=0

1

αa






r∏

l=1

l 6=a

(
αa − αl

)−1




 A∗






r∏

l=1

l 6=a

(

AA∗ − αl1m

)




 , (39)

A+ =

s∑

b=1

βb 6=0

1

βb






s∏

l=1

l 6=b

(
βb − βl

)−1











s∏

l=1

l 6=b

(

A∗A− βl1n

)




A∗ . (40)

�
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Expressions (39) or (40) provide a general algorithm for the computation of the Moore-Penrose pseudoinverse for
any non-zero matrix A. Its implementation requires only the determination of the eigenvalues of AA∗ or of A∗A and
the computation of polynomials on AA∗ or A∗A.

Proof of Theorem 5.1. Eq. (37) was established in the proof of Theorem 4.3 (see (28) and (30)). Relation (38) can be
proven analogously, but it also follows easier (see (37)), by replacing A → A∗ and taking the adjoint of the resulting
expression. Relations (39) and (40) follow from Proposition A.11, particularly from the explicit formula for the spectral
projector given in (52).

6 The Moore-Penrose Pseudoinverse and Least Squares

Let us now consider one of the main applications of the Moore-Penrose pseudoinverse, namely, to optimization of
linear least squares problems. Let A ∈ Mat (C, m, n) and y ∈ C

m be given and consider the problem of finding
x ∈ C

n satisfying the linear equation
Ax = y . (41)

If m = n and A has an inverse, the (unique) solution is, evidently, x = A−1y. In the other cases the solution may
not exist or may not be unique. We can, however, consider the alternative problem of finding the set of all vectors
x′ ∈ C

n such that the Euclidean norm ‖Ax′ − y‖ reaches its least possible value. This set is called the minimizing set
of the linear problem (41). Such vectors x′ ∈ C

n would be the best approximants for the solution of (41) in terms of
the Euclidean norm, i.e., in terms of “least squares”. As we will show, the Moore-Penrose pseudoinverse provides this
set of vectors x′ that minimize ‖Ax′ − y‖. The main result is condensed in the following theorem:

Theorem 6.1 Let A ∈ Mat (C, m, n) and y ∈ C

m be given. Then, the set of all vectors of Cn for which the map
C

n ∋ x 7→ ‖Ax− y‖ ∈ [0, ∞) assumes a minimum coincides with the set

A+y +Ker (A) =
{

A+y +
(
1n −A+A

)
z, z ∈ C

n
}

. (42)

By Proposition 3.3, we also have A+y +Ker (A) = A+y +Ran
(
A+
)⊥

. �

Theorem 6.1 says that the minimizing set of the linear problem (41) consists of all vector obtained by adding to the
vector A+y an element of the kernel of A, i.e., to all vectors obtained adding to A+y a vector annihilated by A. Notice

that for the elements x′ of the minimizing set of the linear problem (41) one has
∥
∥Ax′−y

∥
∥ =

∥
∥
∥
(
AA+−1m

)
y
∥
∥
∥ = ‖P2y‖,

which vanishes if and only if y ∈ Ker (P2) = Ran (A) (by Proposition 3.3), a rather obvious fact.

Proof of Theorem 6.1. The image of A, Ran (A), is a closed linear subspace of Cm. The Best Approximant Theorem
and the Orthogonal Decomposition Theorem guarantee the existence of a unique y0 ∈ Ran (A) such that ‖y0 − y‖ is
minimal, and that this y0 is such that y0 − y is orthogonal to Ran (A).

Hence, there exists at least one x0 ∈ C

n such that ‖Ax0 − y‖ is minimal. Such x0 is not necessarily unique and,
as one easily sees, x1 ∈ C

n has the same properties if and only if x0 − x1 ∈ Ker (A) (since Ax0 = y0 and Ax1 = y0,
by the uniqueness of y0). As we already observed, Ax0 − y is orthogonal to Ran (A), i.e., 〈(Ax0 − y), Au〉 = 0 for all

u ∈ C

n. This means that
〈(

A∗Ax0 −A∗y
)
, u
〉

= 0 for all u ∈ C

n and, therefore, x0 satisfies

A∗Ax0 = A∗y . (43)

Now, relation (18) shows us that x0 = A+y satisfies (43), because A∗AA+y
(18)
= A∗y. Therefore, we conclude that the

set of all x ∈ C

n satisfying the condition of ‖Ax− y‖ being minimal is composed by all vectors of the form A+y + x1

with x1 ∈ Ker (A). By Proposition 3.3, x1 is of the form x1 =
(
1n −A+A

)
z for some z ∈ C

n, completing the proof.

Appendices

A A Brief Review of Hilbert Space Theory and Linear Algebra

In this appendix we collect the more important definitions and results on Linear Algebra and Hilbert space theory
that we used in the main part of this paper. For the benefit of the reader, especially of students, we provide all results
with proofs.
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Hilbert spaces. Basic definitions

A scalar product in a complex vector space V is a function V ×V → C, denoted here by 〈·, ·〉, such that the following
conditions are satisfied: 1. For all u ∈ V one has 〈u, u〉 ≥ 0 and 〈u, u〉 = 0 if and only if u = 0; 2. for all u, v1, v2 ∈ V
and all α1, α2 ∈ C one has

〈
u, (α1v1+α2v2)

〉
= α1〈u, v1〉+α2〈u, v2〉 and

〈
(α1v1+α2v2), u

〉
= α1〈v1, u〉+α2〈v2, u〉;

3. 〈u, v〉 = 〈v, u〉 for all u, v ∈ V.
The norm associated to the scalar product 〈·, ·〉 is defined by ‖u‖ :=

√
〈u, u〉, for all u ∈ V. As one easily

verifies using the defining properties of a scalar product, this norm satisfies the so-called parallelogram identity: for all
a, b ∈ V, one has

‖a+ b‖2 + ‖a − b‖2 = 2‖a‖2 + 2‖b‖2 . (44)

We say that a sequence {vn ∈ V, n ∈ N} of vectors in V converges to an element v ∈ V if for all ǫ > 0 there exists a
N(ǫ) ∈ N such that ‖vn − v‖ ≤ ǫ for all n ≥ N(ǫ). In this case we write v ∈ limn→∞ vn. A sequence {vn ∈ V, n ∈ N}
of vectors in V is said to be a Cauchy sequence if for all ǫ > 0 there exists a N(ǫ) ∈ N such that ‖vn − vm‖ ≤ ǫ for all
n, m ∈ N such that n ≥ N(ǫ) and m ≥ N(ǫ). A complex vector space V is said to be a Hilbert space if it has a scalar
product and if it is complete, i.e., if all Cauchy sequences in V converge to an element of V.

The Best Approximant Theorem

A subset A of a Hilbert space H is said to be convex if for all u, v ∈ A and all µ ∈ [0, 1] one has µu+(1−µ)v ∈ A. A
subset A of a Hilbert space H is said to be closed if every sequence {un ∈ A, n ∈ N} of elements of A that converges in
H converges to an element of A. The following theorem is of fundamental importance in the theory of Hilbert spaces.

Theorem A.1 (Best Approximant Theorem) Let A be a convex and closed subset of a Hilbert space H. Then,
for all x ∈ H there exists a unique y ∈ A such that ‖x− y‖ equals the smallest possible distance between x and A, that

means, ‖x− y‖ = infy′∈A

∥
∥x− y′

∥
∥. �

Proof. Let D ≥ 0 be defined by D = infy′∈A ‖x− y′‖. For each n ∈ N let us choose a vector yn ∈ A with the property
that ‖x − yn‖2 < D2 + 1

n
. Such a choice is always possible, by the definition of the infimum of a set of real numbers

bounded from below.
Let us now prove that the sequence yn, n ∈ N is a Cauchy sequence in H. Let us take a = x− yn and b = x− ym

in the parallelogram identity (44). Then,
∥
∥2x − (ym + yn)

∥
∥2 + ‖ym − yn‖2 = 2‖x − yn‖2 + 2‖x − ym‖2. This can be

written as ‖ym−yn‖2 = 2‖x−yn‖2+2‖x−ym‖2−4
∥
∥x− (ym+yn)/2

∥
∥2. Now, using the fact that ‖x−yn‖2 < D2+ 1

n

for each n ∈ N, we get

‖ym − yn‖2 ≤ 4D2 + 2

(
1

n
+

1

m

)

− 4
∥
∥x− (ym + yn)/2

∥
∥2 .

Since (ym + yn)/2 ∈ A the left hand side is a convex linear combination of elements of the convex set A. Hence, by

the definition of D,
∥
∥x− (ym + yn)/2

∥
∥2 ≥ D2. Therefore, we have

‖ym − yn‖2 ≤ 4D2 + 2

(
1

n
+

1

m

)

− 4D2 = 2

(
1

n
+

1

m

)

.

The right hand side can be made arbitrarily small, by taking both m and n large enough, proving that {yn}n∈N is a
Cauchy sequence. Since A is a closed subspace of the complete space H, the sequence {yn}n∈N converges to y ∈ A.

Now we prove that ‖x− y‖ = D. In fact, for all n ∈ N one has

‖x− y‖ =
∥
∥(x− yn)− (y − yn)

∥
∥ ≤ ‖x− yn‖+ ‖y − yn‖ <

√

D2 +
1

n
+ ‖y − yn‖ .

Taking n → ∞ and using the fact that yn converges to y, we conclude that ‖x − y‖ ≤ D. One the other hand
‖x− y‖ ≥ D by the definition of D and we must have ‖x− y‖ = D.

At last, it remains to prove the uniqueness of y. Assume that there is another y′ ∈ A such that
∥
∥x − y′

∥
∥ = D.

Using again the parallelogram identity (44), but now with a = x− y and b = x− y′ we get

∥
∥2x− (y + y′)

∥
∥2 +

∥
∥y − y′

∥
∥2 = 2

∥
∥x− y

∥
∥2 + 2

∥
∥x− y′

∥
∥2 = 4D2 ,

that means,
∥
∥y − y′

∥
∥2 = 4D2 −

∥
∥2x− (y + y′)

∥
∥2 = 4D2 − 4

∥
∥
∥x−

(
y + y′

)
/2
∥
∥
∥

2

.

Since (y + y′)/2 ∈ A (for A being convex) it follows that
∥
∥x− (y + y′)/2

∥
∥2 ≥ D2 and, hence,

∥
∥y − y′

∥
∥2 ≤ 0, proving

that y = y′.
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Orthogonal complements

If E is a subset of a Hilbert space H, we define its orthogonal complement E⊥ as the set of of vectors in H orthogonal to

all vectors in E: E⊥ =
{

y ∈ H
∣
∣ 〈y, x〉 = 0 for all x ∈ E

}

. The following proposition is of fundamental importance:

Proposition A.2 The orthogonal complement E⊥ of a subset E of a Hilbert space H is a closed linear subspace of
H. �

Proof. If x, y ∈ E⊥, then, for any α, β ∈ C, one has 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉 = 0 for any z ∈ E, showing
that αx+ βy ∈ E⊥. Hence, E⊥ is a linear subspace of H. If xn is a sequence in E⊥ converging to x ∈ H, then, for all

z ∈ E one has 〈x, z〉 =
〈

lim
n→∞

xn, z
〉

= lim
n→∞

〈xn, z〉 = 0, since 〈xn, z〉 = 0 for all n. Hence, x ∈ E⊥, showing that

E⊥ is closed. Above, in the first equality, we used the continuity of the scalar product.

The Orthogonal Decomposition Theorem

Theorem A.3 (Orthogonal Decomposition Theorem) Let M be a closed and linear (and therefore convex) sub-
space of a Hilbert space H. Then every x ∈ H can be written in a unique way in the form x = y + z, with y ∈ M and
z ∈ M⊥. The vector y is such that ‖x− y‖ = infy′∈M

∥
∥x− y′

∥
∥, i.e., is the best approximant of x in M. �

Proof. Let x be an arbitrary element of H. Since M is convex and closed, let us evoke Theorem A.1 and choose y as
the (unique) element of M such that ‖x − y‖ = infy′∈M

∥
∥x − y′

∥
∥. Defining z := x − y all we have to do is to show

that z ∈ M⊥ and to show uniqueness of y and z. Let us first prove that z ∈ M⊥. By the definition of y one has
‖x− y‖2 ≤

∥
∥x− y − λy′

∥
∥2 for all λ ∈ C and all y′ ∈ M. By the definition of z, it follows that ‖z‖2 ≤

∥
∥z − λy′

∥
∥2 for

all λ ∈ C. Writing the right hand side as
〈
z − λy′, z − λy′

〉
we get, ‖z‖2 ≤ ‖z‖2 − 2Re

(
λ〈z, y′〉

)
+ |λ|2

∥
∥y′
∥
∥2. Hence,

2Re
(
λ〈z, y′〉

)
≤ |λ|2

∥
∥y′
∥
∥2 . (45)

Now, write
〈
z, y′

〉
=
∣
∣〈z, y′〉

∣
∣eiα, for some α ∈ R. Since (45) holds for all λ ∈ C, we can pick λ in the form λ = te−iα,

t > 0 and (45) becomes 2t
∣
∣〈z, y′〉

∣
∣ ≤ t2

∥
∥y′
∥
∥2. Hence,

∣
∣〈z, y′〉

∣
∣ ≤ t

2

∥
∥y′
∥
∥2, for all t > 0. But this is only possible if the

left hand side vanishes:
∣
∣〈z, y′〉

∣
∣ = 0. Since y′ is an arbitrary element of M, this shows that z ∈ M⊥.

To prove uniqueness, assume that x = y′ + z′ with y′ ∈ M and z′ ∈ M⊥. We would have y − y′ = z′ − z. But
y − y′ ∈ M and z′ − z ∈ M⊥. Hence, both belong to M∩M⊥ = {0}, showing that y − y′ = z′ − z = 0.

The spectrum of a matrix

The spectrum of a matrix A ∈ Mat (C, n), denoted by σ(A), is the set of all λ ∈ C for which the matrix λ1 − A has
no inverse.

The characteristic polynomial of a matrix A ∈ Mat (C, n) is defined by pA(z) := det(z1 − A). It is clearly a
polynomial of degree n on z. It follows readily from these definitions that σ(A) coincides with the roots of pA. The
elements of σ(A) are said to be the eigenvalues of A. If λ is an eigenvalue of A, the matrix A − λ1 has no inverse
and, therefore, there exists at least one non-vanishing vector v ∈ C

n such that (A− λ1)v = 0, that means, such that
Av = λv. Such a vector is said to be an eigenvector of A with eigenvalue λ. The set of all eigenvectors associated to
a given eigenvalues (plus the null vector) is a linear subspace of Cn, as one easily sees.

The multiplicity of a root λ of the characteristic polynomial of a matrix A ∈ Mat (C, n) is called the algebraic
multiplicity of the eigenvalue λ. The dimension of the subspace generated by the eigenvectors associated to the
eigenvalues λ is called the geometric multiplicity of the eigenvalue λ. The algebraic multiplicity of an eigenvalue is
always larger than or equal to its geometric multiplicity.

The neighborhood of singular matrices

Proposition A.4 Let A ∈ Mat (C, n) be arbitrary and let B ∈ Mat (C, n) be a non-singular matrix. Then, there
exist constants M1 and M2 (depending on A and B) with 0 < M1 ≤ M2 such that A+ µB is invertible for all µ ∈ C

with 0 < |µ| < M1 and for all µ ∈ C with |µ| > M2. �
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Proof. Since B has an inverse, we may write A+ µB =
(
µ1+ AB−1

)
B. Hence, A+ µB has an inverse if and only if

µ1+ AB−1 is non-singular.
Let C ≡ −AB−1 and let {λ1, . . . , λn} ⊂ C be the n not necessarily distinct roots of the characteristic polynomial

pC of C. If all roots vanish, we take M1 = M2 > 0, arbitrary. Otherwise, let us define M1 := min{|λk|, λk 6= 0} and
M2 := max{|λk|, k = 1, . . . , n}. Then, the sets {µ ∈ C| 0 < |µ| < M1} and {µ ∈ C| |µ| > M2} do not contain roots
of pC and, therefore, for µ in these sets, the matrix µ1− C = µ1+ AB−1 is non-singular.

Similar matrices

Two matrices A ∈ Mat (C, n) and B ∈ Mat (C, n) are said to be similar if there is a non-singular matrix P ∈
Mat (C, n) such that P−1AP = B. One has the following elementary fact:

Proposition A.5 Let A and B ∈ Mat (C, n) be two similar matrices. Then their characteristic polynomials coincide,
pA = pB, and, therefore, their spectra also coincide, σ(A) = σ(B), as well as the geometric multiplicities of their
eigenvalues �

Proof. Let P ∈ Mat (C, n) be such that P−1AP = B. Then, pA(z) = det(z1 − A) = det
(

P−1(z1 − A)P
)

=

det
(
z1− P−1AP

)
= det(z1−B) = pB(z), for all z ∈ C.

The spectrum of products of matrices

The next proposition contains a non-evident consequence of Propositions A.5 and A.4.

Proposition A.6 Let A, B ∈ Mat (C, n). Then, the characteristic polynomials of the matrices AB and BA coincide:
pAB = pBA. Therefore, their spectra also coincide, σ(AB) = σ(BA), as well as the geometric multiplicities of their
eigenvalues. �

Proof. IF A or B (or both) are non-singular, then AB and BA are similar. In fact, in the first case we can write
AB = A(BA)A−1 and in the second one has AB = B−1(BA)B. In both cases the claim follows from Proposition
A.5. Let us now consider the case where neither A nor B are invertible. We know from Proposition A.4, that there
exists M > 0 such that A + µ1 is non-singular for all µ ∈ C with 0 < |µ| < M . Hence, for such values of µ, we have
by the argument above that p(A+µ1)B = pB(A+µ1). Now the coefficient of the polynomials p(A+µ1)B and pB(A+µ1) are
polynomials in µ and, therefore, are continuous. Hence, the equality p(A+µ1)B = pB(A+µ1) remains valid by taking the
limit µ → 0, leading to pAB = pBA.

Proposition A.6 can be extended to products of non-square matrices:

Proposition A.7 Let A ∈ Mat (C, m, n) and B ∈ Mat (C, n, m). Clearly, AB ∈ Mat (C, m) and BA ∈ Mat (C, n).
Then, one has xnpAB(x) = xmpBA(x). Therefore, σ(AB) \ {0} = σ(BA) \ {0}, i.e., the set of non-zero eigenvalues of
AB coincide with the set of non-zero eigenvalues of BA. �

Proof. Consider the two (m+ n)× (m+ n) matrices defined by

A′ :=

(
A 0m, m

0n, n 0n, m

)

and B′ :=

(
B 0n, n

0m, m 0m, n

)

.

See (8). It is easy to see that

A′B′ =

(
AB 0m, n

0n, m 0n, n

)

and that B′A′ =

(
BA 0n, m

0m, n 0m, m

)

.

From this, it is now easy to see that pA′B′(x) = xnpAB(x) and that pB′A′(x) = xmpBA(x). By Proposition A.6, one
has pA′B′(x) = pB′A′(x), completing the proof.
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Diagonalizable matrices

A matrix A ∈ Mat (C, n) is said to be diagonalizable if it is similar to a diagonal matrix. Hence A ∈ Mat (C, n) is
diagonalizable if there exists a non-singular matrix A ∈ Mat (C, n) such that P−1AP is diagonal. The next theorem
gives a necessary and sufficient condition for a matrix to be diagonalizable:

Theorem A.8 A matrix A ∈ Mat (C, n) is diagonalizable if and only if it has n linearly independent eigenvectors,
i.e., it the subspace generated by its eigenvectors is n dimensional. �

Proof. Let us assume thatA has n linearly independent eigenvectors {v1, . . . , vn}, whose eigenvalues are {d1, . . . , dn},
respectively. Let P ∈ Mat (C, n) be defined by P =

[[

v1, . . . , vn
]]

. By (12), one has

AP =
[[

Av1, . . . , Avn
]]

=
[[

d1v
1, . . . , dnv

n
]]

and by (13) one has
[[

d1v
1, . . . , dnv

n
]]

= PD. Therefore AP = PD. Since the columns of P are linearly independent,

P is non-singular and one has P−1AP = D, showing that A is diagonalizable.
Let us now assume that A is diagonalizable and that there is a non-singular P ∈ Mat (C, n) such that P−1AP =

D = diag
(
d1, . . . , dn

)
. It is evident that the vectors of the canonical base (10) are eigenvectors of D, with

Dea = daea. Therefore, va = Pea are eigenvectors of A, since Ava = APea = PDea = P
(
daea

)
= daPea = dava. To

show that these vectors va are linearly independent, assume that there are complex numbers α1, . . . , αn such that
α1v1 + · · ·+ αnvn = 0. Multiplying by P−1 from the left, we get α1e1 + · · ·+ αnen = 0, implying α1 = · · · = αn = 0,
since the elements ea of the canonical basis are linearly independent.

The Spectral Theorem is one of the fundamental results of Functional Analysis and its version for bounded and
unbounded self-adjoint operators in Hilbert spaces is of fundamental importance for the so-called probabilistic inter-
pretation of Quantum Mechanics. Here we prove its simplest version for square matrices.

Theorem A.9 (Spectral Theorem for Matrices) A matrix A ∈ Mat (C, n) is diagonalizable if and only if there
exist r ∈ N, 1 ≤ r ≤ n, scalars α1, . . . , αr ∈ C and non-zero distinct projectors E1, . . . , Er ∈ Mat (C, n) such that

A =

r∑

a=1

αaEa , (46)

and

1 =

r∑

a=1

Ea , (47)

with EiEj = δi, jEj. The numbers α1, . . . , αr are the distinct eigenvalues of A. �

The projectors Ea in (46) are called the spectral projectors of A. The decomposition (46) is called spectral de-
composition of A. In Proposition A.11 we will show how the spectral projections Ea can be expressed in terms of
polynomials in A. In Proposition A.12 we establish the uniqueness of the spectral decomposition of a diagonalizable
matrix.

Proof of Theorem A.9. If A ∈ Mat (C, n) is diagonalizable, there exists P ∈ Mat (C, n) such that P−1AP = D =
diag (λ1, . . . , λn), where λ1, . . . , λn are the eigenvalues of A. Let us denote by {α1, . . . , αr}, 1 ≤ r ≤ n, the set of
all distinct eigenvalues of A.

One can clearly write D =
∑r

a=1 αaKa, where Ka ∈ Mat (C, n) are diagonal matrices having 0 or 1 as diagonal
elements, so that

(Ka)ij =







1 , if i = j and (D)ii = αa ,
0 , if i = j and (D)ii 6= αa ,
0 , if i 6= j .

Hence, (Ka)ij = 1 if i = j and (D)ii = αa and (Ka)ij = 0 otherwise. It is trivial to see that

r∑

a=1

Ka = 1 (48)

and that
KaKb = δa, b Ka. (49)

Since A = PDP−1, one has A =
∑r

a=1 αaEa , where Ea := PKaP
−1. It is easy to prove from (48) that

1 =
∑r

a=1 Ea and it is easy to prove from (48) that EiEj = δi, jEj .
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Reciprocally, let us now assume that A has a representation like (46), with the Ea’s having the above mentioned
properties. Let us first notice that for any vector x and for k ∈ {1, . . . , r}, one has by (46)

AEkx =
r∑

j=1

αjEjEkx = αkEkx .

Hence, Ekx is either zero or is an eigenvalue of A. Therefore, the subspace S generated by all vectors {Ekx, x ∈
C

n, k = 1, . . . , r} is a subspace of the space A generated by all eigenvectors of A. However, from (47), one has,
for all x ∈ C

n, x = 1x =
∑r

k=1 Ekx and this reveals that Cn = S ⊂ A. Hence, A = C

n and by Theorem A.8, A is
diagonalizable.

The Spectral Theorem has the following corollary, known as the functional calculus:

Theorem A.10 (Functional Calculus) Let A ∈ Mat (C, n) be diagonalizable and let A =

r∑

a=1

αaEa be its spectral

decomposition. Then, for any polynomial p one has p(A) =

r∑

a=1

p(αa)Ea. �

Proof. By the properties of the spectral projectors Ea, one sees easily thatA2 =

r∑

a, b=1

αaαbEaEb =

r∑

a, b=1

αaαbδa, bEa =

r∑

a=1

(αa)
2Ea. It is then easy to prove by induction that Am =

r∑

a=1

(αa)
mEa, for all m ∈ N0 (by adopting the convention

that A0 = 1, the case m = 0 is simply (47)). From this, the rest of the proof is elementary.

One can also easily show that for a non-singular diagonalizable matrix A ∈ Mat (C, n) one has

A−1 =

r∑

a=1

1

αa
Ea . (50)

Getting the spectral projections

One of the most useful consequences of the functional calculus is an explicit formula for the spectral projections of a
diagonalizable matrix A in terms of a polynomial on A.

Proposition A.11 Let A ∈ Mat (C, n) be non-zero and diagonalizable and let A = α1E1 + · · ·+ αrEr be its spectral
decomposition. Let the polynomials pj, j = 1, . . . , r, be defined by

pj(x) :=
r∏

l=1

l 6=j

(
x− αl

αj − αl

)

. (51)

Then,

Ej = pj(A) =






r∏

k=1

k 6=j

1

αj − αk






r∏

l=1

l 6=j

(

A− αl1

)

(52)

for all j = 1, . . . , r. �

Proof. By the definition of the polynomials pj , it is evident that pj(αk) = δj, k. Hence, by Theorem A.10, pj(A) =
∑r

k=1 pj(αk)Ek = Ej .
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Uniqueness of the spectral decomposition

Proposition A.12 The spectral decomposition of a diagonalizable matrix A ∈ Mat (C, n) is unique. �

Proof. Let A =
r∑

k=1

αkEk be the spectral decomposition of A as described in Theorem A.9, where αk, k = 1, . . . , r,

with 1 ≤ r ≤ n are the distinct eigenvalues of A, Let A =
s∑

k=1

βkFk be a second representation of A, where the βk’s are

distinct and where the Fk’s are non-vanishing and satisfy FjFl = δj, lFl and 1 =
s∑

k=1

Fk. For a vector x 6= 0 it holds

x =
∑s

k=1 Fkx, so that not all vectors Fkx vanish. Let Fk0
x 6= 0. One has AFk0

x =
∑s

k=1 βkFkFk0
x = βk0

Fk0
x. This

shows that βk0
is one of the eigenvalues of A and, hence, {β1, . . . , βs} ⊂ {α1, . . . , αr} and we must have s ≤ r. Let

us order both sets such that βk = αk for all 1 ≤ k ≤ s. Hence,

A =
r∑

k=1

αkEk =
s∑

k=1

αkFk . (53)

Now, consider the polynomials pj , j = 1, . . . , r, defined in (51), for which pj(αj) = 1 and pj(αk) = 0 for all k 6= j.
By the functional calculus, it follows from (53) that, for 1 ≤ j ≤ s,

pj(A) =
r∑

k=1

pj(αk)Ek

︸ ︷︷ ︸

=Ej

=
s∑

k=1

pj(αk)Fk

︸ ︷︷ ︸

=Fj

, ∴ Ej = Fj .

(The equality pj(A) =
∑s

k=1 pj(αk)Fk follows from the fact that the Ek’s and the Fk’s satisfy the same algebraic
relations and, hence, the functional calculus also holds for the representation of A in terms of the Fk’s). Since

1 =

r∑

k=1

Ek =

s∑

k=1

Ek, and Ej = Fj for all 1 ≤ j ≤ s, one has

r∑

k=s+1

Ek = 0. Hence, multiplying by El, with

s + 1 ≤ l ≤ r, it follows that El = 0 for all s + 1 ≤ l ≤ r. This is only possible if r = s, since the Ek’s are
non-vanishing. This completes the proof.

Self-adjointness and diagonalizability

Let A ∈ Mat (C, m, n). The adjoint matrix A∗ ∈ Mat (C, n, m) is defined as the unique matrix for which the equality

〈
u, Av

〉
=
〈
A∗u, v

〉

holds for all u ∈ C

m and all v ∈ C

n. If Aij are the matrix elements of A in the canonical basis, it is an easy exercise to
show that

(
A∗
)

ij
= Aji, where the bar denotes complex conjugation. It is trivial to prove that the following properties

hold: 1.
(
α1A1 + α2A2

)∗
= α1A

∗
1 + α2A

∗
2 for all A1, A2 ∈ Mat (C, m, n) and all α1, α2 ∈ C; 2.

(
AB
)∗

= B∗A∗ for

all A ∈ Mat (C, m, n) and B ∈ Mat (C, p, m); 3. A∗∗ ≡
(
A∗
)∗

= A for all A ∈ Mat (C, m, n).
A square matrix A ∈ Mat (C, n) is said to be self-adjoint if A = A∗. A square matrix U ∈ Mat (C, n) is said to

be unitary if U−1 = U∗. Self-adjoint matrices have real eigenvalues. In fact, if A is self-adjoint, λ ∈ σ(A) and v ∈ C

n

is a normalized (i.e., ‖v‖ = 1) eigenvector of A with eigenvalue λ, then λ = λ〈v, v〉 = 〈v, λv〉 = 〈v, Av〉 = 〈Av, v〉 =
〈λv, v〉 = λ〈v, v〉 = λ, showing that λ ∈ R.

Projectors and orthogonal projectors

A matrix E ∈ Mat (C, n) is said to be a projector if E2 = E and it is said to be a orthogonal projector if it is a
self-adjoint projector: E2 = E and E∗ = E. An important example of an orthogonal projector is the following. Let
v ∈ C

n be such that ‖v‖ = 1 and define,
Pvu := 〈v, u〉 v , (54)

for each u ∈ C

n. In the canonical basis, the matrix elements of Pv are given by
(
Pv

)

ij
= vjvi, where the vk’s are the

components of v. One has,

P 2
v u = 〈v, u〉 Pvv = 〈v, u〉 〈v, v〉 v = 〈v, u〉 v = Pvu ,
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proving that P 2
v = Pv. On the other hand, for any a, b ∈ C

n we get

〈a, Pvb〉 =
〈
a, 〈v, b〉 v

〉
= 〈v, b〉 〈a, v〉 =

〈

〈a, v〉 v, b
〉

=
〈
〈v, a〉 v, b

〉
= 〈Pva, b〉 ,

showing that P ∗
v = Pv. Another relevant fact is that if v1 and v2 are orthogonal unit vectors, i.e., 〈vi, vj〉 = δij , then

Pv1Pv2 = Pv2Pv1 = 0. In fact, for any a ∈ C

n one has

Pv1

(
Pv2a

)
= Pv1

(
〈v2, a〉 v2

)
= 〈v2, a〉 Pv1v2 = 〈v2, a〉 〈v1, v2〉 v1 = 0 .

This shows that Pv1Pv2 = 0 and, since both are self-adjoint, one has also Pv2Pv1 = 0.

Spectral Theorem for self-adjoint matrices

The following theorem establishes a fundamental fact about self-adjoint matrices.

Theorem A.13 (Spectral Theorem for Self-adjoint Matrices) If A ∈ Mat (C, n) is self-adjoint, one can find
a orthonormal set {v1, . . . , vn} of eigenvectors of A with real eigenvalues λ1, . . . , λn, respectively, and one has the
spectral representation

A = λ1Pv1 + · · ·+ λnPvn , (55)

where Pvku := 〈vk, u〉vk satisfy P ∗
vk

= Pvk and PvjPvk = δjkPvk and one has
∑n

k=1 Pvk = 1.
Therefore, if A ∈ Mat (C, n) is a self-adjoint matrix it is diagonalizable. Moreover, there is a unitary P ∈

Mat (C, n) such that P−1AP = diag
(
λ1, . . . , λn

)
. �

Proof. Let λ1 ∈ R be an eigenvalue of A and let v1 be a corresponding eigenvector. Let us choose ‖v1‖ = 1. Define
A1 ∈ Mat (C, n) by A1 := A− λ1Pv1 . Since both A and Pv1 are self-adjoint, so is A1, since λ1 is real.

It is easy to check that A1v1 = 0. Moreover, [v1]
⊥, the subspace orthogonal to v1, is invariant under the action of

A1. In fact, for w ∈ [v1]
⊥ one has 〈A1w, v1〉 = 〈w, A1v1〉 = 0, showing that A1w ∈ [v1]

⊥.
It is therefore obvious that the restriction of A1 to [v1]

⊥ is also a self-adjoint operator. Let v2 ∈ [v1]
⊥ be an

eigenvector of this self-adjoint restriction with eigenvalues λ2 and choose ‖v2‖ = 1. Define

A2 := A1 − λ2Pv2 = A− λ1Pv1 − λ2Pv2 .

Since λ2 is real, A2 is self-adjoint. Moreover, A2 annihilates the vectors in the subspace [v1, v2] and keeps [v1, v2]
⊥

invariant. In fact, A2v1 = Av1−λ1Pv1v1 −λ2Pv2v1 = λ1v1−λ1v1−λ2〈v2, v1〉v2 = 0, since 〈v2, v1〉 = 0. Analogously,
A2v2 = A1v2−λ2Pv2v2 = λ2v2−λ2v2 = 0. Finally, for any α, β ∈ C and w ∈ [v1, v2]

⊥ one has
〈
A2w, (αv1+βv2)

〉
=

〈
w, A2(αv1 + βv2)

〉
= 0, showing that [v1, v2]

⊥ is invariant by the action of A2.

Proceeding inductively, we find a set of vectors {v1, . . . , vn}, with ‖vk‖ = 1 and with va ∈ [v1, . . . , va−1]
⊥ for

2 ≤ a ≤ n, and a set of real numbers {λ1, . . . , λn} such that An = A− λ1Pv1 − · · · − λnPvn annihilates the subspace
[v1, . . . , vn]. But, since {v1, . . . , vn} is an orthonormal set, one must have [v1, . . . , vn] = C

n and, therefore, we
must have An = 0, meaning that

A = λ1Pv1 + · · ·+ λnPvn . (56)

One has PvkPvl = δk, l Pvk , since 〈vk, vl〉 = δkl. Moreover, since {v1, . . . , vn} is a basis in Cn one has

x = α1v1 + · · ·+ αnvn (57)

for all x ∈ C

n. By taking the scalar product with vk one gets that αk = 〈vk, x〉 and, hence,

x = 〈v1, x〉v1 + · · ·+ 〈vn, x〉vn = Pv1x+ · · ·+ Pvnx = (Pv1 + · · ·+ Pvn) x .

Since x was an arbitrary element of Cn, we established that Pv1 + · · ·+ Pvn = 1.
It follows from (56) that Ava = λava. Hence, each vk is an eigenvector of A with eigenvalue λk. By Theorem

A.8, A is diagonalizable: there is P ∈ Mat (C, n) such that P−1AP = diag
(
λ1, . . . , λn

)
. As we saw in the proof of

Theorem A.8, we can choose P =
[[

v1, . . . , vn
]]

. This is, however, a unitary matrix, since, as one easily checks,

P ∗P =






〈v1, v1〉 · · · 〈v1, vn〉
...

. . .
...

〈vn, v1〉 · · · 〈vn, vn〉




 = 1 ,

because 〈va, vb〉 = δa, b.
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The Polar Decomposition Theorem for square matrices

It is well-known that every complex number z can be written in the so-called polar form z = |z|eiθ, where |z| ≥ 0 and
θ ∈ [−π, π), with |z| :=

√
zz and eiθ := z|z|−1. There is an analogous claim for square matrices A ∈ Mat (C, n). This

is the content of the so-called Polar Decomposition Theorem, Theorem A.14, below. Let us make some preliminary
remarks.

Let A ∈ Mat (C, n) and consider A∗A. One has (A∗A)∗ = A∗A∗∗ = A∗A and, hence A∗A is self-adjoint.
By Theorem A.13, we can find an orthonormal set {vk, k = 1, . . . , n} of eigenvectors of A∗A, with eigenvalues
dk, k = 1, . . . , n, respectively, with the matrix

P :=
[[

v1, . . . , vn
]]

(58)

being unitary and such that P ∗
(
A∗A

)
P = D := diag (d1, . . . , dn). One has dk ≥ 0 since dk‖vk‖2 = dk〈vk, vk〉 =

〈vk, Bvk〉 = 〈vk, A∗Avk〉 = 〈Avk, Avk〉 = ‖Avk‖2 and, hence, dk = ‖Avk‖2/‖vk‖2 ≥ 0.

Define D1/2 := diag
(√

d1, . . . ,
√
dn
)
. One has

(

D1/2
)2

= D. Moreover,
(

D1/2
)∗

= D1/2, since every
√
dk is

real. The non-negative numbers
√
d1, . . . ,

√
dn are called the singular values of A.

Define the matrix
√
A∗A ∈ Mat (C, n) by

√
A∗A := PD1/2P ∗ . (59)

The matrix
√
A∗A is self-adjoint, since

(√
A∗A

)∗

=
(

PD1/2P ∗
)∗

= PD1/2P ∗ =
√
A∗A. Notice that

(√
A∗A

)2

=

P (D1/2)2P ∗ = PDP ∗ = A∗A. From this, it follows that

(

det
(√

A∗A
))2

= det

((√
A∗A

)2
)

= det(A∗A) = det(A∗) det(A) = det(A) det(A) = |det(A)|2 .

Hence, det
(√

A∗A
)

= |det(A)| and, therefore,
√
A∗A is invertible if and only if A is invertible.

We will denote
√
A∗A by |A|, following the analogy suggested by the complex numbers. Now we can formulate the

Polar Decomposition Theorem for matrices:

Theorem A.14 (Polar Decomposition Theorem) If A ∈ Mat (C, n) there is a matrix U ∈ Mat (C, n) such that

A = U
√
A∗A . (60)

If A is non-singular, then U is unique. The representation (60) is called the polar representation of A. �

Proof. As above, let dk, k = 1, . . . , n be the eigenvalues of A∗A and let vk, k = 1, . . . , n be a corresponding
orthonormal set of eigenvalues: A∗Avk = dkvk and 〈vk, vl〉 = δk l (see Theorem A.13).

Since dk ≥ 0 we order them in a way that dk > 0 for all k = 1, . . . , r and dk = 0 for all k = r + 1, . . . , n. Hence,

Avk = 0 for all k = r + 1, . . . , n , (61)

because A∗Avk = 0 implies 0 = 〈vk, A∗Avk〉 = 〈Avk, Avk〉 = ‖Avk‖2.
For k = 1, . . . , r, let wk be the vectors defined by

wk :=
1√
dk

Avk , k = 1, . . . , r . (62)

It is easy to see that

〈wk, wl〉 =
1√
dkdl

〈Avk, Avl〉 =
1√
dkdl

〈A∗Avk, vl〉 =
dk√
dkdl

〈vk, vl〉 =
dk√
dkdl

δk l = δk l ,

for all k, l = 1, . . . , r. Hence, {wk, k = 1, . . . , r} is an orthonormal set. We can add to this set an additional
orthonormal set {wk, k = r + 1, . . . , n}, in the orthogonal complement of the set generated by {wk, k = 1, . . . , r}
and get a new orthonormal set {wk, k = 1, . . . , n} as a basis for Cn.

Let P ∈ Mat (C, n), be defined as in (58) and let Q and U be elements of Mat (C, n) defined by

Q :=
[[

w1, . . . , wn

]]

, U := QP ∗ .

Since
{
vk, k = 1, . . . , n

}
and

{
wk, k = 1, . . . , n

}
are orthonormal sets, one easily sees that P and Q are unitary

and, therefore, U is also unitary.
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It is easy to show that AP = QD1/2, where D1/2 := diag
(√

d1, . . . ,
√
dn
)
, In fact,

AP
(58)
= A

[[

v1, . . . , vn
]]

(12)
=

[[

Av1, . . . , Avn
]]

(61)
=

[[

Av1, . . . , Avr 0, . . . , 0
]]

(62)
=

[[√
d1w1, . . . ,

√
drwr 0, . . . , 0

]]
(13)
=

[[

w1, . . . , wn

]]

D1/2 = QD1/2 .

Now, since AP = QD1/2, it follows that A = QD1/2P ∗ = UPD1/2P ∗ (59)
= U

√
A∗A, as we wanted to show.

To show that U is uniquely determined if A is invertible, assume that there exists U ′ such that A = U
√
A∗A =

U ′
√
A∗A. We noticed above that

√
A∗A is invertible if and only if A is invertible. Hence, if A is invertible, the equality

U
√
A∗A = U ′

√
A∗A implies U = U ′. If A is not invertible the arbitrariness of U lies in the choice of the orthonormal

set {wk, k = r + 1, . . . , n}.

The following corollary is elementary:

Theorem A.15 Let A ∈ Mat (C, n). Then, there exists a unitary matrix V ∈ Mat (C, n) such that

A =
√
AA∗ V . (63)

If A is non-singular, then V is unique. �

Proof. For the matrix A∗, relation (60) says that A∗ = U0

√
(A∗)∗A∗ = U0

√
AA∗ for some unitary U0. Since

√
AA∗

is self-adjoint, one has A =
√
AA∗U∗

0 . Identifying V ≡ U∗
0 , we get what we wanted.

The polar decomposition theorem can be generalized to bounded or closed unbounded operators acting on Hilbert
spaces and even to C∗-algebras. See e.g., [6] and [7].

Singular values decomposition

The Polar Decomposition Theorem, Theorem A.14, has a corollary of particular interest.

Theorem A.16 (Singular Values Decomposition Theorem) Let A ∈ Mat (C, n). Then, there exist unitary
matrices V and W ∈ Mat (C, n) such that

A = V SW ∗ , (64)

where S ∈ Mat (C, n) is a diagonal matrix whose diagonal elements are the singular values of A, i.e., the eigenvalues
of

√
A∗A. �

Proof. The claim follows immediately from (60) and from (59) by taking V = UP , W = P and S = D1/2.

Theorem A.16 can be generalized to rectangular matrices. In what follows, m, n ∈ N and we will use definitions
(4), (8) and relation (9), that allows to injectively map rectangular matrices into certain square matrices.

Theorem A.17 (Singular Values Decomposition Theorem. General Form) Let A ∈ Mat (C, m, n). Then,
there exist unitary matrices V and W ∈ Mat (C, m+ n) such that

A = Im, m+nV SW ∗Jm+n, n , (65)

where S ∈ Mat (C, m+n) is a diagonal matrix whose diagonal elements are the singular values of A′ (defined in (8)),
i.e., are the eigenvalues of

√
(A′)∗A′. �

Proof. The matrix A′ ∈ Mat (C, m + n) is a square matrix and, by Theorem A.16, it can be written in terms of a
singular value decomposition A′ = V SW ∗ with V and W ∈ Mat (C, m+ n), both unitary, and S ∈ Mat (C, m + n)
being a diagonal matrix whose diagonal elements are the singular values of A′. Therefore, (65) follows from (9).
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B Singular Values Decomposition and Existence of the Moore-

Penrose Pseudoinverse

We will now present a second proof of the existence of the Moore-Penrose pseudoinverse of a general matrix A ∈
Mat (C, m, n) making use of Theorem A.16. We first consider square matrices and later consider general rectangular
matrices.

The Moore-Penrose pseudoinverse of square matrices

Let us first consider square diagonal matrices. If D ∈ Mat (C, n) is a diagonal matrix, its Moore-Penrose pseudoinverse
is given by D+ ∈ Mat (C, n), where, for i = 1, . . . , n one has

(
D+
)

ii
=

{ (
Dii

)−1
, if Dii 6= 0 ,

0 , if Dii = 0 .

It is elementary to check that DD+D = D, D+DD+ = D+ and that DD+ and D+D are self-adjoint. Actually,
DD+ = D+D, a diagonal matrix whose diagonal elements are either 0 or 1:

(
DD+)

ii
=
(
D+D

)

ii
=

{
1 , if Dii 6= 0 ,
0 , if Dii = 0 .

Now, let A ∈ Mat (C, n) and let A = V SW ∗ be its singular values decomposition (Theorem A.16). We claim that
its Moore-Penrose pseudoinverse A+ is given by

A+ = WS+V ∗ . (66)

In fact, AA+A =
(
V SW ∗

)(
WS+V ∗

)(
V SW ∗

)
= V SS+SW+ = V SW ∗ = A and

A+AA+ =
(
WS+V ∗

)(
V SW ∗

)(
WS+V ∗

)
= WS+SS+V ∗ = WS+V ∗ = A+ .

Moreover, AA+ =
(
V SW ∗

)(
WS+V ∗

)
= V

(
SS+

)
V ∗ is self-adjoint, since SS+ is a diagonal matrix with diagonal

elements 0 or 1. Analogously, A+A =
(
WS+V ∗

)(
V SW ∗

)
= W

(
S+S

)
W ∗ is self-adjoint.

The Moore-Penrose pseudoinverse of rectangular matrices

Consider now A ∈ Mat (C, m, n) and let A′ ∈ Mat (C, m+ n) be the (m+ n)× (m+ n) defined in (8). Since A′ is a
square matrix it has, by the comments above, a unique Moore-Penrose pseudoinverse (A′)+ satisfying

1. A′
(
A′
)+

A′ = A′,

2.
(
A′
)+

A′
(
A′
)+

=
(
A′
)+

,

3. A′
(
A′
)+

and
(
A′
)+

A′ are self-adjoint.

In what follows we will show that A+ ∈ Mat (C, n, m) is given by

A+ := In, m+n

(
A′
)+

Jm+n, m , (67)

with the definitions (4)–(5), i.e.,

A+ = In, m+n

(

Jm+n, mAIn, m+n

)+

Jm+n, m . (68)

The starting point is the existence of the Moore-Penrose pseudoinverse of the square matrix A′. Relation A′
(
A′
)+

A′ =

A′ means, using definition (8), that Jm+n, mA
[

In, m+n

(
A′
)+

Jm+n, m

]

AIn, m+n = Jm+n, mAIn, m+n and from (6)–(7)

it follows, by multiplying to the left by Im, m+n and to the right by Jm+n, n, that AA+A = A, one of the relations we
wanted to prove.

Relation
(
A′
)+

A′
(
A′
)+

=
(
A′
)+

means, using definition (8), that
(
A′
)+

Jm+n, mAIn, m+n

(
A′
)+

=
(
A′
)+

. Multi-
plying to the left by In, m+n and to the right by Jm+n, m, this establishes that A+AA+ = A+.

Since A′
(
A′
)+

is self-adjoint, it follows from the definition (8) that Jm+n, mAIn, m+n

(
A′
)+

is self-adjoint, i.e.,

Jm+n, mAIn, m+n

(
A′)+ =

(

AIn, m+n

(
A′)+

)∗

Im, m+n .
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Therefore, multiplying to left by Im, m+n and to the right by Jm+n, m, it follows from (6) that

AIn, m+n

(
A′)+Jm+n, m = Im, m+n

(

AIn, m+n(A
′)+
)∗

=
(

AIn, m+n

(
A′)+Jm+n, m

)∗

,

proving that AA+ is self-adjoint
Finally, since

(
A′
)+

A′ is self-adjoint, it follows from definition (8) that
(
A′
)+

Jm+n, mAIn, m+n is self-adjoint, i.e.,

(
A′)+Jm+n, mAIn, m+n = Jm+n, n

((
A′)+Jm+n, mA

)∗

.

Hence, multiplying to the left by In, m+n and to the right by Jm+n, n, if follows from (7) that

In, m+n(A
′)+Jm+n, mA =

((
A′
)+

Jm+n, mA
)∗

Jm+n, n =
(

In, m+n

(
A′
)+

Jm+n, mA
)∗

,

establishing that A+A is self-adjoint. This proves that A+ given in (67) is the Moore-Penrose pseudoinverse of A.
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