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1. Introduction

PARLER DES TYPES DE REACTION: TRANSFER, CAP. Nuclear reactions are known
to play a fundamental role in the evolution of stars [?, ?]. They are responsible for the nu-
cleosynthesis, i.e. the formation of the elements in the Universe. Big-Bang nucleosynthesis
essentially provides protons (~ 75%) and o particles (~ 25%). Small amounts of heavier
elements are also produced, up to '2C [?]. The primordial nucleosynthesis is followed by
the formation of early starts where elements up to Fe are produced. Heavier elements are
then synthesized by various processes, such as neutron capture, and explosive events in su-
pernovae [?,?]. Astrophysical scenarios and stellar models are discussed in many books
(see for example Refs. [?,?,?,?]) and review articles (see for example Refs. [?,?,?]).

The role of nuclear physics in astrophysics is fundamental, and this discipline is re-
ferred to as nuclear astrophysics. Many observational properties find their origin in nuclear
physics. (i) A famous example is the 05, known as the Hoyle state [?], which was pre-
dicted from the observed '>C abundance in the Universe, and then found experimentally.
The formation of >C is currently well understood from the triple o process. (if) From the
observed abundances of the elements, a gap between masses 5 and 8 is explained by the par-
ticle instability of YHe and JLi. (iii) In the high-mass region of the abundance distribution,
peaks are clearly observed, and are explained by the existence of magic numbers in nuclear
physics. Magic nuclei are known to be strongly bound, and therefore difficult to destroy
by photodissociation. (iv) The abundance distribution also presents an "even-odd" effect,
even nuclei being more abundant; again the origin of this effect stems from nuclear binding
energies since odd-mass nuclei are less bound and therefore more fragile than even-mass
nuclei.

Stellar models require many nuclear inputs. A huge number (up to several thousands)
of reaction rates, involving charged particles (protons and alphas) and neutrons, are needed
in nucleosynthesis models. A challenge for nuclear physicists is to determine the cross sec-
tions at stellar energies, which are in general much lower than the Coulomb barrier. Except
in a few cases, direct measurements at these low energies (referred to as the "Gamow peak")
are not possible, since the cross sections are too low to be measured in the laboratory. A
theoretical support is then necessary to complement the data, and in particular to extrapolate
them down to stellar energies. Nuclear astrophysics is a field where the complementarity
between experiment and theory is crucial.

Experimental techniques have been strongly developed in the last decades, with two
main objectives: going to energies as low as possible, and investigating reactions involv-
ing radioactive nuclei. Many important reactions involve short-lived nuclei (such as "Be,
8Li, 13N, I8F, etc.) and can be studied with radioactive beams only. Direct measurements
also take benefit from underground facilities, such as LUNA [], where the background is
strongly reduced and allows precise measurements, even at very low energies where the
cross sections can be as low as 1077 barn.

Owing to the experimental difficulties associated with direct measurements, several in-
direct techniques have been developed, such as Coulomb breakup [], the Asymptotic Nor-
malization Constant (ANC, see Ref. []) method, or the Trojan Horse [] method. The ad-
vantages of these indirect approaches is to circumvent the smallness of the cross sections.
However they require a precise theoretical modeling for the determination of the relevant
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cross sections from the data.

The determination of reaction rates is of course based on the scattering theory. Various
models are being used in the literature. Owing to the low energies relevant in nuclear astro-
physics, and to the low level densities, the optical model (also referred to as the "potential
model") can be used for capture reactions [?]. Heavy-ion fusion reactions are also described
by this model, even if different variants exit [?]. An extension of the standard optical model
is the Distorted Wave Born Approximation (DWBA, see Ref. [?]), used to describe trans-
fer processes such as (o,n) or (a,p). Important developments have been performed in the
framework of microscopic models, which present an important predictive power since they
only rely on a nucleon-nucleon interaction. Solving a many-body Schrodinger equation
for scattering states is however a difficult task, and the cluster approximation [?] is used
in most calculations. However recent works succeeded to address, in a microscopic theory,
the 2H(ZH,y)“He [?1, 3He(d,p)“He [?] and 3He(oc, Y)7Be [?] reactions without the cluster ap-
proximation. These calculations are highly computer demanding, and are currently limited
to low-mass systems.

The models discussed above are, in principle, independent of experimental data. In
practice, available data are used to test the model, and/or to tune some important parameter.
In contrast, the R-matrix theory [] relies on the existence of data, but is an efficient tool
to analyze reactions of astrophysical interest. The cross sections can be parametrized by
a small number of real, energy-independent, parameters. This fitting procedure requires
the availability of experimental data, but in general allows a reliable extrapolation down to
stellar energies. The R-matrix theory deals with capture, transfer and elastic scattering on
an equal footing. As a general statement, the R-matrix is efficient to describe any process
involving continuum states (an recent example is the >N and '>B beta decays to three-o
states [?]). This property is often used, for example, by measuring elastic cross sections to
constrain the parameters, and to improve the accuracy of the low-energy extrapolations. In
practice, the R-matrix theory is limited to the low-energy region, where the level density is
limited (typically up to a few levels per MeV).

When the mass increases the level density is in general too large for cluster models or
for an R-matrix approach. In that situation, the cross section essentially depends on proper-
ties of the compound nucleus. Here the shell-model approach [?] provides information on
resonance properties such as energies, spins, widths, etc. An extension to the continuum has
been developed [?]. The Hauser-Feshbach formalism [?] is also widely used in high-mass
systems, with a large level density.

A specificity of nuclear astrophysics is to require a huge number of reaction rates. These
reaction rates are obtained from various sources, experimental as well as theoretical. The
link between nuclear physics and astrophysics is then performed by compilations, where the
authors provide an evaluation of the available data, and recommended reaction rates. The
first compilations were performed by the Caltech group [?,?], and then improved in various
ways: evaluation of uncertainties, improved numerical treatment, update of experimental
data, etc. Some compilations address specific reactions, such as Bib-Bang nucleosynthesis
[?2,?,?] or solar fusion reactions [?], but other works cover a wider range [?, ?]. Most
reactions play a minor role in stellar models. However a few reactions, such a '>C(a,y)'°0
or F(p,a) >0 are crucial, and need a special attention.

Nuclear astrophysics is not limited to reactions: several additional nuclear inputs are
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necessary in stellar models. Nuclear masses define the nucleosynthesis in the r and s
processes. Beta-decay rates are important, as they may compete with capture reactions.
Electron-capture [] and neutrino-induced reactions [] also play a role in specific stellar en-
vironments.

In this review, we discuss the current status of theoretical descriptions, as well as of ex-
perimental developments, in nuclear astrophysics. We essentially focus on charged-particle
induced reactions, which represent one of the main inputs in stellar evolution. In section
[2] we present an overview of the different processes in the nucleosynthesis. Section [3]
addresses specific nuclear inputs; in particular we discuss the calculation of the reaction
rates. In section 4] we briefly describe some theoretical models used for nuclear reactions.
Section [5] is devoted to experiment; we discuss direct as well as indirect techniques, and
recent developments of radioactive beams. In section[6] we address a few reactions, which
are particularly important. The conclusion and outlook are presented in Section

2. Stellar nucleosynthesis

2.1. Principles

2.2. H burning

2.3. He burning

2.4. s and r processes
2.5. explosive burning

2.6. fusion reactions
3. Overview of nuclear inputs in astrophysics

3.1. Reaction rates

3.2. masses

3.3. Dbeta decay

3.4. neutrino induced reactions

3.5. fission barriers
4. Theoretical models for reactions

4.1. Scattering wave functions

In this section, we present an outline of the reaction theory needed for nuclear astrophysics.
In particular we are dealing with low energies, around and below the Coulomb barrier. Our
goal is to modelize different processes, such as transfer or capture reactions, by various
theories. They will be described in this section. We start from a general formalism of the
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reaction theory, and then apply it to different models. This outline is of course very brief,
and we refer to textbooks [?,?,?,?,?] for a detailed presentation.
The main goal is to solve the Schrodinger equation

HY, =EY¥, 4.1

for positive energies E. The scattering wave function ‘¥ is characterized by the entrance
channel O (set of quantum numbers of the colliding nuclei). The description of ‘¥, depends
on the model, and on the assumptions concerning the Hamiltonian. In the optical model [?],
the internal structure of the colliding nuclei is neglected, and the wave function simply
depends on the relative coordinate. In microscopic cluster models [?, ?, ?] and their ab-
intro extensions [?], the wave function depends on all nucleon coordinates, and is totally
antisymmetrized to account for the Pauli principle.

If the short-range properties of the scattering wave functions strongly depend on the
adopted model, the analytical expression at large nucleus-nucleus distances is common
to all approaches. Let us consider the Hamiltonian of each nucleus H; (i = 1,2). The
associated Schrodinger equation reads

Hi|of") = EP[97), 4.2)

where index o represents all quantum numbers of the individual nuclei (spin and projection,
parity, isospin, etc.). Energies EX can be negative or positive, and |¢%) are the individual
wave functions normalized as

(07 |0F) = 8. 4.3)

When the nucleus-nucleus relative coordinate r is large, the asymptotic behaviour of the
scattering wave function (4.1) is given by

r—soo

ikgr
Wor —>Z< Ko T80+ foo (6 )er >¢‘f‘¢3‘, (4.4)

where kg, is the wave number in channel o, and fy0(0) is the scattering amplitude depending
on the scattering angle 0. In (4.4) we have neglected the Coulomb interaction for the sake
of simplicity. Including this interaction introduces distortion effects but does not change
the physical interpretation (see detail in Ref. [?]). Notice that the asymptotic expression
@.4) can be defined with different normalization factors. This does not affect the scatter-
ing amplitudes, but needs to be specified when using scattering wave functions in matrix
elements.
Let us first expand to total wave function ‘¥ over the different channels o as

Yok = ;wgk. (4.5)
Each component can be written as
Z‘POk P (), (4.6)

where the wave vector k is assumed to be in the z direction. Since the total angular momen-
tum JM and parity T are good quantum numbers, [{.6) is expanded as

Yoo = Z<I?°I§°V1 SIV)(CIOVTM) Wy 4.7)
7
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This partial-wave expansion is useful at low energies, where a small number of J values
contribute to the wave function, and hence to the cross section. In (4.7)), I is the channel
spin, and stems from the coupling of I{* and /3. For the sake of clarity, the entrance channel
index 0 and the wave number k are implied in W/}, Here also, expansion (4.7) does not
depend on the model. At large distances a partial wave tends to

1
M —— A (Ig(kor) - U({Z.EOg(kCr)> oM, (4.8)

where I;(x) and Oy(x) are the ingoing and outgoing Coulomb functions [?], A, a normal-
ization factor and @™ is the channel wave function

1 JM
oM = [[¢‘f‘®¢8‘] ®Yz(9r>] : 4.9)

Index ¢ stands for ¢ = (o/l). In , U’™ is the collision matrix (or scattering matrix),
sometimes referred to as $’™ in the literature), which provides elastic, inelastic or transfer
cross sections. The calculation of the collision matrix depends on the model. The next
subsections are devoted to some models commonly used in nuclear astrophysics.

4.2. Models
4.2.1. The optical model

The main idea of the optical model is to simplify the Schodinger equation as much as possi-
ble, and in particular to simulate excited channels by an appropriate choice of the potential.
In this way, the nucleus-nucleus interaction is reduced to a radial potential, depending on
the relative coordinate only. Formally the Feshbach theory [?] shows that excited configu-
rations can be taken into account by an energy-dependent, complex and non-local potential.
The imaginary part simulates the absorption to inelastic channels, which are not explicitly
included in the calculation. As the number of open channels increases with energy, the
amplitude of the absorption term follows this property. At very low energies, typical of
astrophysical interest, the elastic channel is often the only open channel, and the nucleus-
nucleus potential can be approximated by a real potential.

In practice the original Feshbach theory is difficult to apply. It is however the starting
point for various approximations. In the double folding model [?,?], the Hamiltonian of the
system reads

A A

H=H+H,+Tz+Y Y vwn(ri—rj), (4.10)
i=1j=1

where H; are the internal hamiltonian, Ty is the relative kinetic energy, and vyy(r) an effec-
tive nucleon-nucleon potential. Typical examples are the M3Y [?] and Sao Paulo potentials
(SPP, see Refs. [?,?]). The M3Y potential is fitted on the 7" matrix obtained with the Reid
potential. The SPP interaction is simpler and has been fitted on several systems; the Pauli
principle is approximated by a non-local term. Various improvements have been proposed
to include a density dependence in the NN interaction [?] (see a review in Ref. [?]).
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If we neglect the antisymmetrization between the colliding nuclei, the wave function of
the system is expanded as

1PJMTE Zg JMTC’ (411)

where excited channels can be, in principle, taken into account. The relative functions
g’ (r) provide the scattering matrix. Inserting expression (4.11) in the Schrédinger equation
provides a coupled-channel system
2 02
h d %

a0+ DV () = (E B~ B (), @12)

where the coupling potentials are obtained from

Al A

Vo (1) ¢1¢2!ZZvNNr— HENIOF %), (4.13)

i=1j=

and additional algebraic coefficients [?]. Potential (4.13) is written in a more elegant form
Vococ’ / drldrzvNN(r—rl +r2)p (rl)pgo‘/(rz), 4.14)

! .,
where py® are the nuclear densities

%IZS r—E)[o%). (4.15)

The densities are usually taken from experiment or from theoretical calculations. Equa-
tion is known as the double-folding potential [?]. The calculation is usually per-
formed by using Fourier transforms. In most calculations, a single channel is included. As
the M3Y and SP interactions are real, a phenomenological imaginary term is introduced as

W(r)=NV(r). (4.16)

The M3Y and SP potentials, combined with experimental densities, are equivalent to the
Buck potential [?] for o — o scattering [?, ?].

In nuclear astrophysics, the nucleus-nucleus potential is usually real. It can be obtained,
either from the folding method [?] or by assuming a specific shape, such as a Woods-Saxon
or a Gaussian potential [?]. The parameters are fitted on important properties of the system,
such as binding energies, resonance energies, or low-energy phase shifts. The technique
is clearly limited to systems where experimental data are available. Also, the high level
densities of heavy nuclei are not well adapted.

When the potential is determined, the main issue is to solve the coupled-channel system
(#.12). Essentially two approaches are used in the literature: discretization methods, such
as the Numerov algorithm [?, ?] or the R-matrix method [?].
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4.2.2. Microscopic cluster theories

Microscopic models are based on fundamental principles of quantum mechanics, such as
the treatment of all nucleons, with exact antisymmetrization of the wave functions. The
Hamiltonian of a A-nucleon system is

A A

H=YT + Y Vi (4.17)
i=1 i<j=1

where T; is the kinetic energy and V;; a nucleon-nucleon interaction [?].

The Schrddinger equation associated with this Hamiltonian can not be solved exactly
when A > 3. For very light systems (A ~ 4 —5) efficient methods [?] exist, even for con-
tinuum states [?]. However most reactions relevant in nuclear astrophysics involve heavier
nuclei essentially with nucleon or o projectiles. Recent developments of ab initio models
(see for example Refs. [?, ?, ?]) are quite successful for spectroscopic properties of low-
lying states. These models make use of realistic interactions, fitted on many properties of
the nucleon-nucleon system. A recent work within the Fermionic Molecular Dynamics [?]
succeeded in computing the *He(ot,y)’Be cross section from a realistic interaction, and
without the cluster approximation. However, a consistent description of bound and scatter-
ing states of an A-body problem remains a very difficult task [?], in particular for transfer
reactions.

In cluster models, it is assumed that the nucleons are grouped in clusters [?,?]. We
present here the specific application to two-cluster systems. The internal wave functions of
the clusters are denoted as ¢f"n"vf (&), where I; and ; are the spin and parity of cluster i, and
€, represents a set of their internal coordinates.

The wave function in channel c is written by using the antisymetrization operator 4 as

PIME — 76/ (p) GIMT(Qp, 1L E)), (4.18)

which corresponds to the Resonating Group (RGM) definition [?,?,?]. In most applications,
the internal cluster wave functions (1)?“’“ are defined in the shell model. Accordingly, the
nucleon-nucleon interaction must be adapted to this choice, which leads to effective forces,
such as the Volkov [?] or the Minnesota [?] interactions. The relative wave functions g{{é I(p)
are to be determined from the Schrodinger equation, which is transformed into a integro-
differential equation involving a non-local potential [?]. In most applications, this relative
function is expanded over Gaussian functions [?, ?], which corresponds to the Generator

Coordinate Method (GCM). The wave function (.18)) is rewritten as
Wy / M (R)®M™(R), (4.19)

where ®/M™(R) is a projected Slater determinant, and f/*(R) the generator function, which
must be determined. The GCM is equivalent to the RGM, but is better adapted to numerical
calculations, as it makes uses of projected Slater determinants (see Refs. [?,?] for detail).
The main advantage of cluster models with respect to other microscopic theories is their
ability to deal with reactions, as well as with nuclear spectroscopy. The first applications
were done for reactions involving light nuclei, such as d, *He or o particles [?, ?]. More
recently, much work has been devoted to the improvement of the internal wave functions:
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multicluster descriptions [?], large-basis shell model extensions [?], or monopolar distortion
[?].

As mentioned before, the RGM radial wave functions are expanded over a Gaussian
basis. The GCM is well adapted to numerical calculations, and to a systematic approach,
but the Gaussian behaviour is not physical at large distances, and must be corrected. We use
the Microscopic R-matrix Method [?,?] which is a direct extension of the standard R-matrix
technique [?], based on the existence of two regions: the internal region (with channel ra-
dius a), where the nuclear force and the nucleus-nucleus antisymmetrization are important,
and the external region where they can be neglected. In the external region, the Gaussian
behaviour of the RGM radial function is replaced by Coulomb functions. Matching the
internal and external components provide, either the collision matrix for scattering states,
or the binding energy for bound states.

4.2.3. The phenomenological R-matrix method

The R-matrix method is well known in atomic and nuclear physics [?]. As mentioned in
the previous section, the basic idea is to divide the space in two regions: the internal region
(with radius a), where the nuclear force is important, and the external region, where the
interaction between the nuclei is governed by the Coulomb force only. Although the R-
matrix parameters do depend on the channel radius a, the sensitivity of the cross section
with respect to its choice is quite weak. In the R-matrix method, the energy dependence of
the cross sections is obtained from Coulomb functions, as expected from the Schrodinger
equation.

The physics of the internal region is determined by a number N of poles, which are
characterized by energy E; and reduced widths ¥,;. In a multichannel problem, the R-matrix
at energy E is defined as

N

itny
RIME) = , 4.20
if (E) é E_E (4.20)

which must be given for each partial wave J7 (these indices are dropped in the R-matrix
parameters for the sake of clarity). Indices i and f refer to the initial and final channels.
The pole properties are associated with the physical energy and width of resonances, but
not strictly equal. This is known as the difference between “formal” and “observed" param-
eters, deduced from experiment. In a general case, involving more than one pole, the link
between those two sets is not straightforward (see Refs. [?, ?] for a general formulation of
this problem).

The method can be applied in two ways: (i) in the calculable R-matrix, parameters
Ey, 1) and vy s are obtained from a variational calculation; (ii) in the phenomenological R-
matrix variant, these quantities are fitted to experiment. The calculable R-matrix method is
used, for example in microscopic calculations (see section[d.2.2)). Many applications exist
in atomic and in nuclear physics.

Although the origin of the phenomenological variant is identical, its application is some-
what different. In nuclear astrophysics the main goal of the R-matrix method [?] is to pa-
rameterize some experimentally known quantities, such as cross sections or phase shifts,
with a small number of parameters, which are then used to extrapolate the cross section
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down to astrophysical energies. A well known example is the '>C(a,y)'60 reaction, which
has been studied by many groups. In spite of impressive experimental efforts, the lowest
experimental energies are around 0.8 MeV, whereas the Gamow peak (at the typical He-
burning temperature Ty = 0.2) is £y ~ 0.3 MeV. At these subcoulomb energies, the cross
sections drop by several orders of magnitude, and extrapolation techniques are necessary.
We refer to Refs. [?] for recent works on this topic.

The R-matrix method can be applied to transfer as well as to capture reactions. It is
usually used to investigate resonant reactions but is also suited to describe non-resonant
processes [?]. In the latter case, the non-resonant behavior is simulated by a high-energy
pole, referred to as the background contribution, which makes the R-matrix nearly energy
independent.

4.2.4. The DWBA method

The Distorted Wave Born Approximation (DWBA) starts from the premise that elastic scat-
tering is dominant and has to be treated fully, while non-elastic events can be treated by
perturbation theory. Although DWBA is a first-order theory, the way it is usually applied
is not simply first-order. That is because optical potentials fitted to elastic scattering data
may include higher-order effects implicitly. Therefore different potentials are needed for
higher-order methods, such as coupled-channels calculations, than those used in DWBA in
order to reproduce the same elastic data.
The DWBA method can be applied to transfer reactions

a(=b+x)+A—b+B(=A+x) (4.21)

and assumes that particle x goes from the projectile a to the target A [?]. Typical examples
are (d,p) and (d,n) reactions, where a nucleon is transferred from the incident deuteron to
the target. The cross section for the transfer reaction (#.21)) is obtained from the matrix
elements

TPWBA — //dradngB(rB) <YW WB|AV|Y ¥a > galra)- (4.22)

The distorted waves gq (o) and gg(rg), (rq and rg are the relative coordinates) correspond-
ing to the relative motion in the entrance and exit channels, respectively, are generated by
optical potentials Uy, and U (see Refs. [?,?] for more detail). For the sake of clarity we
omit the quantum numbers in the radial functions. The residual interaction is defined in two
different ways

AV = Vg + Vs —Uqy (prior)
= Vi +Via— UB (pOSt), 4.23)

which correspond to "prior" and "post" definitions, respectively; they provide identical val-
ues for TPWBA The main problem of the method is that the potentials are usually poorly
known. In general, a good approximation is to neglect Vy4 — Uq or Vs — Up. The matrix
element then contains distorted scattering wave functions X, Xg, and the radial bound state
wave functions of the transferred cluster.
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Since more realistic descriptions of nucleus a(B) should involve other configurations
than b+ x (A + x), spectroscopic factors are introduced (S, and Sg). The DWBA cross
section is therefore linked to the experimental cross section through

Oexp = Su SBODWBA - (4.24)

The precision of the DWBA has been investigated in Ref. [?] for transfer reactions at
low energies. The '3C(a,n)!%0 cross section was calculated in a microscopic model, and in
the DWBA with conditions as close as possible to the reference calculation. The conclusion
is twofold. On one hand, the DWBA method turns out to be very sensitive to the conditions
of the calculations: choice of the nucleus-nucleus potentials and, to a lesser extent, of
the internal wave functions of the colliding nuclei. This sensitivity is due to very basic
properties, i.e. the short-range character of the DWBA matrix elements, which are quite
sensitive to details of the wave functions. On the other hand, the difference between the
DWBA and the reference microscopic method can be fairly large, and varies with angular
momentum. This is most likely due to antisymmetrization effects which are approximately
included in the DWBA through the choice of deep nucleus-nucleus potentials. This property
should also occur in other systems and suggests that the DWBA method can only provide
transfer cross sections with a non-negligible uncertainty.

4.3. Cross sections
4.3.1. Transfer reactions

Although elastic scattering does not play any role in the nucleosynthesis, it represents the
simplest process. It is also used to determine the properties of low-energy resonances (see
for example Ref [?]). For the sake of simplicity, we limit ourselves to single-channel cal-
culations involving zero-spin nuclei. In that case the collision matrix U’™ contains a single
element, parameterized as

U’ = exp(2i8"), (4.25)

and the scattering amplitude is given by

f(8) (204 1)(U* = 1)Py(cos9), (4.26)

2ik &

where P, (x) is a Legendre polynomial. For real potentials, 8’ is real and |U*| = 1. Absorp-
tion can be simulated by an imaginary part of the potential but (4.26) remains valid. The
elastic cross section is obtained from
do
aQ
In charged-particle systems, series (4.26) converges very slowly owing to the long range of

the Coulomb interaction. In these conditions, the phase shift 8 and the scattering amplitude
£(8) are divided in two parts: the nuclear and Coulomb contributions. This gives

& = &+
f(8) = fn(8)+ fc(8), (4.28)

1£(8)[. 4.27)
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where the Coulomb phase shift Sé and scattering amplitude fc(0) are known analytically.
The nuclear contribution fy(0) converges rapidly (see Ref. [?] for detail).

In multichannel calculations, the collision matrix U’" contains several elements (num-
ber of open channels ¢). The non-diagonal terms provide, either inelastic cross sections,
or transfer cross sections. The integrated cross section for a transition from the entrance
channel O to a channel o is given by

1

T
0= 0=1 @I+ Y U ot (4.29)
’ 12 2L+ 1) (2L +1) ; Mzz}xla 0bolo otk

where I} and I, are the spins of the colliding nuclei. At low energies, relevant in nuclear
astrophysics, the summation (#.29) contains very few terms. In particular, resonant reac-
tions often involve a single term. The differential cross section can be found, for example
in Refs. [?,?].

4.3.2. Radiative capture

Radiative capture reactions play an important role in the nucleosynthesis [?]. They can
be seen as a transition from an initial scattering state to a final bound state of the system.
This process arises from the electromagnetic interaction, and can therefore be treated in the
perturbation theory [?]. If H, is the photon-emission Hamiltonian for the nuclear system,
the capture cross section to a final state J;77 is given by

do, ky 1
E.Jmt = —
dQY( Jimy) 2w (21 + 1) (2L + 1)
x Y| <WMIH,(q,9) WY > (4.30)
qviVvaMy

where g = %1 is the photon polarization, W//*s™ the final-state wave function, and where
we have explicitly written the spin orientations v{Vvs.

To compute the cross section, the initial wave function is expanded in partial waves,
and the electromagnetic operator is expanded in multipoles Mﬁ . The electric 6 = E and
magnetic 6 = M multipole operators are given by

—6284 )Y ()

.UNZ

D)0+ gs(i)si| - VItY(Q,,), 4.31)

with
ge(i) =1/2—1;;)
gS(i):gp(l/z_tiz)+gn(l/2+tiz) (4~32)

where 7;; is the isospin projection of nucleon i, and g, g, are the gyromagnetic factors of
the proton (g, = 5.586) and of the neutron (g, = —3.826). Equations (4.3T) are written in
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the framework of a microscopic approach. Simplified expressions, valid for two-particles
can be found, for example in Refs. [?,?]. After integration over the photon angle €, the
total cross section is given by

2Jf+ 1
2L +1)(2L+1)
KM 8m(h4-1)
20+ LEA(2A+1)!12

GC(E7JfTEf) =

| < W M2 (E) > 7, (4.33)

(57\.’,’1&'

where ¢y and I refer to the entrance channel. The summations in (4.33)) are limited by the
usual selection rules

|J,‘—Jf| <A S]i—i-.]f
nny = (=) (for 6 = E),
iy = (—)M! (for (6 = M). (4.34)

In addition, the long-wavelength approximation (kyR < 1, where R is a typical dimension
of the system) strongly reduces the summation over A. In general, a single multipole is
important. As in the previous subsection we only give the integrated cross section, where
no interference between multipoles and partial waves shows up. In contrast, the differential
cross section (4.30) involves interference terms (see definition in Ref. [?]).

4.3.3. Fusion
5. Experimental measurements

5.1. Direct methods
5.2. Indirect

(Coulomb breakup, Trojan horse, ANC, spectroscopic factors)

5.3. Radioactive beams
5.4. Underground experiments

5.5. electron screening

6. Recent works on important reactions

7. Conclusion

here is [?]
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